Page 79 - Geometric Modeling and Algebraic Geometry
P. 79

76     P. H. Johansen et al.
                           Acknowledgements

                           We would like to thank the referees for helpful comments. This research was sup-
                           ported by the European Union through the project IST 2001–35512 ‘Intersection al-
                           gorithms for geometry based IT applications using approximate algebraic methods’
                           (GAIA II).



                           References

                            1. V. I. Arnol’d. Normal forms of functions in neighbourhoods of degenerate critical points.
                              Russian Math Surveys, 29ii:10–50, 1974.
                            2. V. I. Arnol’d. Critical points of smooth functions and their normal forms. Russian Math
                              Surveys, 30v:1–75, 1975.
                            3. V. I. Arnol’d, S. M. Guse˘ ın-Zade, and A. N. Varchenko. Singularities of differentiable
                              maps. Vol. I, volume 82 of Monographs in Mathematics. The classification of critical
                              points, caustics and wave fronts, Translated from the Russian by Ian Porteous and Mark
                              Reynolds. Birkh¨ auser Boston Inc., Boston, MA, 1985.
                            4. J. W. Bruce and C. T. C. Wall. On the classification of cubic surfaces. J. London Math.
                              Soc. (2), 19(2):245–256, 1979.
                            5. S. Endraß et al. SURF 1.0.4. 2003. A Computer Software for Visualising Real Algebraic
                              Geometry, http://surf.sourceforge.net.
                            6. G.-M. Greuel, G. Pfister, and H. Sch¨ onemann. SINGULAR 3.01. A Computer Alge-
                              bra System for Polynomial Computations. Centre for Computer Algebra, University of
                              Kaiserslautern (2005). http://www.singular.uni-kl.de.
                            7. C. M. Jessop. Quartic surfaces with singular points. Cambridge University Press, 1916.
                            8. H. Kn¨ orrer and T. Miller. Topologische Typen reeller kubischer Fl¨ achen. Math. Z.,
                              195(1):51–67, 1987.
                            9. O. Labs and D. van Straten. The Cubic Surface Homepage. 2001. http://Cubics.
                              AlgebraicSurface.net.
                           10. H. B. Laufer. On minimally elliptic singularities. Amer. J. Math., 99(6):1257–1295, 1977.
                           11. C. Moura.  Local intersections of plane algebraic curves.  Proc. Amer. Math. Soc.,
                              132(3):687–690 (electronic), 2004.
                           12. S. P´ erez-D´ ıaz, J. Sendra, and J. Rafael Sendra. Parametrization of approximate algebraic
                              curves by lines. Theoret. Comput. Sci., 315(2-3):627–650, 2004.
                           13. S. P´ erez-D´ ıaz, J. Sendra, and J. R. Sendra. Parametrization of approximate algebraic
                              surfaces by lines. Comput. Aided Geom. Design, 22(2):147–181, 2005.
                           14. R. Piene. Polar classes of singular varieties. Ann. Sci. ´ Ecole Norm. Sup. (4), 11(2):247–
                              276, 1978.
                           15. K. Rohn. Ueber die Fl¨ achen vierter Ordnung mit dreifachem Punkte. Math. Ann.,
                              24(1):55–151, 1884.
                           16. L. Schl¨ afli. On the distribution of surfaces of the third order into species. Philos. Trans.
                              Royal Soc., CLIII:193–241, 1863.
                           17. T. W. Sederberg, J. Zheng, K. Klimaszewski, and T. Dokken. Approximate implicitization
                              using monoid curves and surfaces. Graphical Models and Image Processing, 61(4):177–
                              198, 1999.
                           18. B. Segre. The Non-singular Cubic Surfaces. Oxford University Press, Oxford, 1942.
                           19. T. Takahashi, K. Watanabe, and T. Higuchi. On the classification of quartic surfaces with
                              triple point. I, II. Sci. Rep. Yokohama Nat. Univ. Sect. I, (29):47–70, 71–94, 1982.
   74   75   76   77   78   79   80   81   82   83   84