Page 94 - Geometric Modeling and Algebraic Geometry
P. 94
92 R. Krasauskas and S. Zube
2. M. Kazakeviˇ ci¯ut˙ e, Classification of pairs of natural quadrics from the point of view of
Laguerre geometry, Lithuanian Mathematical Journal, 45 (2005), 63–84.
3. Krasauskas, R., Minimal rational parametrizations of canal surfaces, Computing,toap-
pear.
4. Krasauskas, R. and M. Kazakeviˇ ci¯ut˙ e, Universal rational parametrizations and spline
curves on toric surfaces, in: Computational Methods for Algebraic Spline Surfaces, ESF
Exploratory Workshop, Springer, 2005, pp. 213–231.
5. Krasauskas, R. and M¨ aurer, C., Studying cyclides using Laguerre geometry, Computer
Aided Geometric Design 17 (2000) 101–126.
6. Landsmann, G., Schicho J., and Winkler, F., The parametrization of canal surfaces and
the decomposition of polynomials into a sum of two squares, J. Symbolic Computation
32 (2001) 119–132.
7. Peternell, M. and Pottmann, H., Computing rational parametrizations of canal surfaces, J.
Symbolic Computation 23 (1997), 255–266.
8. Pottmann, H. and Peternell, M., Application of Laguerre geometry in CAGD, Computer
Aided Geometric Design 15 (1998), 165–186.
9. Pratt, M. J., Cyclides in computer aided geometric design, Computer Aided Geometric
Design 7 (1990), 221–242.
10. Zube, S., Bidegree (2, 1) parametrizable surfaces in projective 3-space, Lithuanian Math.
J. 38 (1998), 379–402.