Page 94 - Geometric Modeling and Algebraic Geometry
P. 94

92     R. Krasauskas and S. Zube
                            2. M. Kazakeviˇ ci¯ut˙ e, Classification of pairs of natural quadrics from the point of view of
                              Laguerre geometry, Lithuanian Mathematical Journal, 45 (2005), 63–84.
                            3. Krasauskas, R., Minimal rational parametrizations of canal surfaces, Computing,toap-
                              pear.
                            4. Krasauskas, R. and M. Kazakeviˇ ci¯ut˙ e, Universal rational parametrizations and spline
                              curves on toric surfaces, in: Computational Methods for Algebraic Spline Surfaces, ESF
                              Exploratory Workshop, Springer, 2005, pp. 213–231.
                            5. Krasauskas, R. and M¨ aurer, C., Studying cyclides using Laguerre geometry, Computer
                              Aided Geometric Design 17 (2000) 101–126.
                            6. Landsmann, G., Schicho J., and Winkler, F., The parametrization of canal surfaces and
                              the decomposition of polynomials into a sum of two squares, J. Symbolic Computation
                              32 (2001) 119–132.
                            7. Peternell, M. and Pottmann, H., Computing rational parametrizations of canal surfaces, J.
                              Symbolic Computation 23 (1997), 255–266.
                            8. Pottmann, H. and Peternell, M., Application of Laguerre geometry in CAGD, Computer
                              Aided Geometric Design 15 (1998), 165–186.
                            9. Pratt, M. J., Cyclides in computer aided geometric design, Computer Aided Geometric
                              Design 7 (1990), 221–242.
                           10. Zube, S., Bidegree (2, 1) parametrizable surfaces in projective 3-space, Lithuanian Math.
                              J. 38 (1998), 379–402.
   89   90   91   92   93   94   95   96   97   98   99