Page 89 - Geometric Modeling and Algebraic Geometry
P. 89

5 Canal Surfaces Defined by Quadratic Families of Spheres  87










                                                                           (++)
                                           Fig. 5.6. Quadratic canal surfaces of type H  .
                                                                           +−

                           Example 9. The case H +0 : c(t)=(1 − t , 2at, 0,b(1 + t ),b(1 + t )), a> 0.
                                                                           2
                                                              2
                                                                                    2
                           Then D(t)=4a b (1 + t ) , and there are two bi-degree (4, 2) parametrizations of
                                                2 2
                                        2 2
                           Env(C) (Fig. 5.7(left)) defined by the following matrices X(t):

                                          2ib(t +i)  0          2ib(t − i)  0
                                                           ,                    .
                                             2b    a(t +i)        2b    a(t − i)
                           Example 10. The case H [1]  : c(t)=(1 − t , 0, 0, 2at, a(1 + t) /2). Then D(t)=
                                                              2
                                                                              2
                                               +−
                           a (3 + 2t +3t )(1 − t) , and there are two bi-degree (3, 2) parametrizations of
                                                2
                            2
                                        2
                           Env(C) (Fig. 5.7(right)) defined by the following matrices X(t):
                            
 √                       
 √                                 √
                               3a(t + µ) −ia(t − 1)       3a(t +¯µ) −ia(t − 1)       1+2 2i
                               √                   ,      √                   ,  µ =         .
                             −i 3(t + µ)  (t − 1)       −i 3(t +¯µ)  (t − 1)             3











                                                                       (++)     [1]
                                       Fig. 5.7. Quadratic canal surfaces of type H  and H  .
                                                                       +0       +−




                           5.5 B´ ezier representations

                           Consider the case E ++ (see Fig. 5.5(left)) of canal surface generated by the ellipse
                           C: x /a + x /b = x on the 2-plane x 3 = x 4 =0. In order to parameterize
                                  2
                                       2
                                          2
                                               2
                               2
                               1       2       0
                           Env(C) and its PE transforms we find a rational B´ ezier representation of Γ(C) first.
   84   85   86   87   88   89   90   91   92   93   94