Page 480 - Global Tectonics
P. 480

462   REFERENCES



           Windley, B.F. (1984)  The Evolving Continents, 2nd edn Wiley,   Yuan, X., Sobolev, S.V. & Kind, R. (2002) Moho topography in the
             London.                                      central Andes and its geodynamic implications. Earth planet.
           Wingate, M.T.D., Pisarevsky, S.A. & Evans, D.A.D. (2002) Rodinia   Sci. Lett. 199, 389–402.
             connections between Australia and Laurentia: no SWEAT, no   Zachos, J. et al. (2001) Trends, rhythms and aberrations in global
             AUSWUS? Terra Nova 14, 121–8.                climate 65 Ma to present. Science 292, 686–93.
           Winter, J.D. (2001)  An Introduction to Igneous and Metamorphic   Zandt, G., Myers, S.C. & Wallace, T.C. (1995) Crust and
             Petrology. Prentice-Hall, New Jersey.        mantle structure across the Basin and Range–Colorado
           Wittlinger. G.  et al. (2004) Teleseismic imaging of subducting   Plateau boundary at 37°N latitude and implications for
             lithosphere and Moho offsets beneath western Tibet.  Earth   Cenozoic extensional mechanism.  J. geophys. Res.  100, 10
             planet. Sci. Lett. 221, 117–30.              529–48.
           Wolfenden, E. et al. (2004) Evolution of the northern Main Ethio-  Zatman, S. (2000) On steady rate coupling between an elastic
             pian rift: birth of a triple junction. Earth planet. Sci. Lett. 224,   upper crust and a viscous interior. Geophys. Res. Lett. 27, 2421–
             213–28.                                      4.
           Wolfenden, E. et al. (2005) Evolution of a volcanic rifted margin:   Zegers, T.E. & van Keken, P.E. (2001) Middle Archean continent
             southern Red Sea, Ethiopia. Bull. geol. Soc. Am. 117, 846–64.  formation by crustal delamination. Geology 29, 1083–6.
           Woodcock, N.H. & Fischer, M. (1986) Strike-slip duplexes.   Zhao, D. et al. (1997) Depth extent of the Lau Back-arc spreading
             J. struct. Geol. 8, 725–35.                  center and its relation to subduction processes.  Science  278,
           Woodcock, N.H. & Rickards, B. (2003) Transpressive duplex and   254–7.

             flower structure: Dent Fault System, NW England. J. struct.   Zhao, G. et al. (2001) High-pressure granulites (retrograded eclog-
             Geol. 25, 1981–92.                           ites) from the Hengshan Complex, North China Craton;
           Woodhouse, J.H. & Dziewonski, A.M. (1984) Mapping the upper   petrology and tectonic implications. J. Petrol. 42, 1141–70.
             mantle: three dimensional modelling of Earth structure by   Zhao, G. et al. (2002) Review of global 2.1–1.8 Ga orogens: impli-
             inversion of seismic waveforms. J. geophys. Res. 89, 5953–86.  cations for a pre-Rodinia supercontinent.  Earth Sci. Rev.  59,
           Wyllie, P.J. (1981) Plate tectonics and magma genesis.  Geol.   125–62.
             Rundsch. 70, 128–53.                       Zhao, W., Nelson, K.D. & Project INDEPTH team (1993) Deep

           Wyllie, P.J. (1988) Magma genesis, plate tectonics and chemical   seismic reflection evidence for continental underthrusting
             differentiation of the Earth. Rev. Geophys. 26, 370–404.  beneath southern Tibet. Nature 366, 557–9.
           Wyman D.A. & Kerrich, R. (2002) Formation of Archean conti-  Zho, W. et al. (2001) Crustal structure of central Tibet as derived
             nental lithospheric roots: the role of mantle plumes. Geology   from the project INDEPTH wide-angle seismic data. Geophys.
             30, 543–6.                                   J. Int. 145, 486–98.
           Xie, J. et al. (2004) Lateral variations of crustal seismic attenuation   Zhong, S. & Gurnis, M. (1993) Dynamic feedback between a con-

             along the INDEPTH profiles in Tibet from  Lg Q inversion.   tinent-like raft and thermal convection. J. geophys. Res. 98, 12
             J. geophys. Res. 109, B10308, doi:10.1029/2004JB002988.  219–32.
           Yáñez, G. & Cembrano, J. (2004) Role of viscous plate coupling   Zhu, L. (2000) Crustal structure across the San Andreas Fault,
             in the late Tertiary Andean tectonics.  J. geophys. Res.  109,   southern California from teleseismic converted waves. Earth
             B02407, doi:10.1029/2003JB002494.            planet. Sci. Lett. 179, 183–90.
           Yamazaki D. & Karato, S.-I. (2001) Some mineral physics con-  Zhu, L.  et al. (2006) Crustal thickness variations in the Aegean
             straints on the rheology and geothermal structure of Earth’s   region and implications for the extension of continental crust.
             lower mantle. American Mineralogist 86, 385–91.  J. geophys. Res. 111, B01301, doi:10.1029/2005JB003770.
           Yin, A. & Harrison, T.M. (2000) Geologic evolution of the Hima-  Ziegler, P.A. (1993) Plate-moving mechanisms: their relative
             layan Tibetan Orogen. Annu. Rev. Earth planet. Sci. 28, 211–80.  importance. J. geol. Soc. Lond. 150, 927–40.
           Yogodzinski, G.M., Lees, J.M. Churikova, T.G.  et al.  (2001)   Zoback, M.D. (2000) Strength of the San Andreas.  Nature  405,
             Geochemical evidence for the melting of subducting oceanic   31–32.
             lithosphere at plate edges. Nature 409, 500–4.  Zoback, M.D.  et al. (1987) New evidence on the state of
           Young, G.M. (1992) Late Proterozoic stratigraphy and the   stress of the San Andreas fault system.  Science  238, 1105–
             Canada–Australia connection. Geology 20, 215–18.  11.
           Yuan, X. et al. (2000) Subduction and collision processes in the   Zoback, M.L. (1992) First- and second-order pattern of stress in
             central Andes constrained by converted seismic phases. Nature   the lithosphere: the World Stress Map Project. J. geophys. Res.
             408, 958–61.                                 97, 11 703–28.
   475   476   477   478   479   480   481   482   483   484   485