Page 284 - Glucose Monitoring Devices
P. 284
References 291
[57] Scaramuzza AE, Arnaldi C, Cherubini V, Piccinno E, Rabbone I, Toni S, Tumini S,
Candela G, Cipriano P, Ferrito L, Lenzi L, Tinti D, Cohen O, Lombardo F. Use of
the predictive low glucose management (PLGM) algorithm in Italian adolescents
with type 1 diabetes: CareLink data download in a real-world setting. Acta Diabetolog-
ica 2017;54(3):317e9. https://doi.org/10.1007/s00592-016-0927-0. Epub 2016/10/17.
PubMed PMID: 27744516.
[58] Beato-Vibora PI, Gil-Poch E, Galan-Bueno L, Lazaro-Martin L, Arroyo-Diez FJ. The
incremental benefits of the predictive low-glucose suspend function compared to the
low-glucose suspend function as automation against hypoglycemia in sensor-
augmented pump therapy. Journal of Diabetes Science and Technology 2018;12(6):
1241e3. https://doi.org/10.1177/1932296818791536. Epub 2018/07/31. PubMed PMID:
30058373; PMCID: PMC6232727.
[59] Beato-Vibora PI, Quiros-Lopez C, Lazaro-Martin L, Martin-Frias M, Barrio-
Castellanos R, Gil-Poch E, Arroyo-Diez FJ, Gimenez-Alvarez M. Impact of sensor-
augmented pump therapy with predictive low-glucose suspend function on glycemic
control and patient satisfaction in adults and children with type 1 diabetes. Diabetes
Technology and Therapeutics 2018;20(11):738e43. https://doi.org/10.1089/dia.2018.0199.
Epub 2018/09/27. PubMed PMID: 30256132.
[60] Abraham MB, Smith GJ, Nicholas JA, Fairchild JM, King BR, Ambler GR,
Cameron FJ, Davis EA, Jones TW, Group PS. Characteristics of automated insulin sus-
pension and glucose responses with the predictive low-glucose management system.
Diabetes Technology and Therapeutics 2019;21(1):28e34. https://doi.org/10.1089/
dia.2018.0205. Epub 2018/12/27. PubMed PMID: 30585769.
[61] Cherubini V, Gesuita R, Skrami E, Rabbone I, Bonfanti R, Arnaldi C, D’Annunzio G,
Frongia A, Lombardo F, Piccinno E, Schiaffini R, Toni S, Tumini S, Tinti D, Cipriano P,
Minuto N, Lenzi L, Ferrito L, Ventrici C, Ortolani F, Cohen O, Scaramuzza A. Optimal
predictive low glucose management settings during physical exercise in adolescents
with type 1 diabetes. Pediatric Diabetes 2019;20(1):107e12. https://doi.org/10.1111/
pedi.12792. Epub 2018/11/01. PubMed PMID: 30378759.
[62] Maahs DM, Calhoun P, Buckingham BA, Chase HP, Hramiak I, Lum J, Cameron F,
Bequette BW, Aye T, Paul T, Slover R, Wadwa RP, Wilson DM, Kollman C,
Beck RW. A randomized trial of a home system to reduce nocturnal hypoglycemia in
type 1 diabetes. Diabetes Care 2014;37(7):1885e91. https://doi.org/10.2337/dc13-
2159. Epub 2014/05/09. PubMed PMID: 24804697; PMCID: PMC4067393.
[63] Buckingham BA, Raghinaru D, Cameron F, Bequette BW, Chase HP, Maahs DM,
Slover R, Wadwa RP, Wilson DM, Ly T, Aye T, Hramiak I, Clarson C, Stein R,
Gallego PH, Lum J, Sibayan J, Kollman C, Beck RW. Predictive low-glucose insulin
suspension reduces duration of nocturnal hypoglycemia in children without increasing
ketosis. Diabetes Care 2015;38(7):1197e204. https://doi.org/10.2337/dc14-3053. Epub
2015/06/08. PubMed PMID: 26049549; PMCID: PMC4477332.
[64] Messer LH, Calhoun P, Buckingham B, Wilson DM, Hramiak I, Ly TT, Driscoll M,
Clinton P, Maahs DM. In-home nighttime predictive low glucose suspend experience
in children and adults with type 1 diabetes. Pediatric Diabetes 2017;18(5):332e9.
https://doi.org/10.1111/pedi.12395. Epub 2016/04/30. PubMed PMID: 27125223;
PMCID: PMC5086306.