Page 78 - Glucose Monitoring Devices
P. 78
76 CHAPTER 4 Consequences of SMBG systems inaccuracy
[72] Kovatchev BP, Breton M, Man CD, Cobelli C. In silico preclinical trials: a proof of
concept in closed-loop control of type 1 diabetes. Journal of Diabetes Science and Tech-
nology 2009;3(1):44e55.
[73] Wilinska ME, et al. Overnight closed-loop insulin delivery with model predictive con-
trol: assessment of hypoglycemia and hyperglycemia risk using simulation studies.
Journal of Diabetes Science and Technology 2009;3(5):1109e20.
[74] Gonder-Frederick L, Cox D, Kovatchev B, Schlundt D, Clarke W.
A biopsychobehavioral model of risk of severe hypoglycemia. Diabetes Care 1997;
20(4):661e9.
[75] Shepard JA, Gonder-Frederick L, Vajda K, Kovatchev B. Patient perspectives on
personalized glucose advisory systems for type 1 diabetes management. Diabetes Tech-
nology and Therapeutics 2012;14(10):858e61.
[76] Campos-Na ´n ˜ez E, Fortwaengler K, Breton MD. Clinical impact of blood glucose moni-
toring accuracy: an in-silico study. Journal of Diabetes Science and Technology 2017;
11(6):1187e95.
[77] Patek SD, et al. Empirical representation of blood glucose variability in a compart-
mental model. In: Kirchsteiger H, Jørgensen JB, Renard E, del Re L, editors. Prediction
methods for blood glucose concentration: design, use and evaluation. Cham: Springer
International Publishing; 2016. p. 133e57.
[78] Kovatchev BP, Patek SD, Ortiz EA, Breton MD. Assessing sensor accuracy for non-
adjunct use of continuous glucose monitoring. Diabetes Technology and Therapeutics
2015;17(3):177e86.
[79] Facchinetti A, Favero SD, Sparacino G, Castle JR, Ward WK, Cobelli C. Modeling the
glucose sensor error. IEEE Transactions on Biomedical Engineering 2014;61(3):
620e9.
[80] Breton MD, Hinzmann R, Campos-Nan ˜ez E, Riddle S, Schoemaker M, Schmelzeisen-
Redeker G. Analysis of the accuracy and performance of a continuous glucose moni-
toring sensor prototype: an in-silico study using the UVA/PADOVA type 1 diabetes
simulator. Journal of Diabetes Science and Technology 2017;11(3):545e52.
[81] Vettoretti M, Facchinetti A, Sparacino G, Cobelli C. A model of self-monitoring blood
glucose measurement error. Journal of Diabetes Science and Technology 2017;11(4):
724e35.
[82] Fabris C, Patek SD, Breton MD. Are risk indices derived from CGM interchangeable
with SMBG-based indices? Journal of Diabetes Science and Technology 2016;10(1):
50e9.
[83] Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ. Translating the A1c
assay into estimated average glucose values. Diabetes Care 2008;31(8):1473e8.
[84] Fritzen K, Heinemann L, Schnell O. Modeling of diabetes and its clinical impact. Jour-
nal of Diabetes Science and Technology 2018;12(5):976e84.
[85] McQueen RB, et al. Association between glycated hemoglobin and health utility for
type 1 diabetes. The Patient: Patient-Centered Outcomes Research Jun. 2014;7(2):
197e205.
[86] McQueen RB, Breton MD, Ott M, Koa H, Beamer B, Campbell JD. Economic value of
improved accuracy for self-monitoring of blood glucose devices for type 1 diabetes in
Canada. Journal of Diabetes Science and Technology 2016;10(2):366e77.
[87] McQueen RB, et al. Economic value of improved accuracy for self-monitoring of blood
glucose devices for type 1 and type 2 diabetes in England. Journal of Diabetes Science
and Technology 2018;12(5):992e1001.