Page 226 - Handbook Of Integral Equations
P. 226

b  y(t)
               30.             dt = f(x),   0 < k <1.
                      a |x – t| k
                     It is assumed that |a| + |b| < ∞. Solution:
                                   1    1    d     x  f(t) dt  1   2 1      x  Z(t)F(t)
                            y(x)=    cot( πk)               –   cos ( πk)            dt,
                                  2π    2    dx  a  (x – t) 1–k  π 2  2   a  (x – t) 1–k
                     where
                                      1+k     1–k         d      t  dτ     b  f(s) ds
                           Z(t)=(t – a) 2 (b – t) 2 ,  F(t)=                           .
                                                          dt    (t – τ) k  Z(s)(s – τ) 1–k
                                                              a         τ
                     •
                       Reference: F. D. Gakhov (1977).
                       a
                           y(t)
               31.               dt = f(x),   0 < k <1,  0 < a ≤ ∞.
                          2
                              2 k
                      0  |x – t |
                     Solution:
                                           1           a  2–2k                 t  k
                                2Γ(k) cos  πk     d     t   F(t) dt              s f(s) ds
                         y(x)= –         2   x k–1                ,    F(t)=              .
                                        1+k     2  dx          1–k                     1–k
                                  π Γ                x   2   2                0  2   2
                                       2                (t – x ) 2              (t – s ) 2
                     •
                       Reference: P. P. Zabreyko, A. I. Koshelev, et al. (1975).
                         b  y(t)
               32.               dt = f(x),    0 < k <1,  λ >0.
                      a |x – t |
                              λ k
                          λ
                     1 . The transformation
                      ◦
                                                                  1–λ
                                                       λ
                                               λ
                                           z = x ,  τ = t ,  w(τ)= τ λ y(t)
                     leads to an equation of the form 3.8.30:
                                                  B

                                                     w(τ)
                                                    |z – τ| k  dτ = F(z),
                                                 A
                                      λ
                               λ
                     where A = a , B = b , F(z)= λf(z 1/λ ).
                     2 . Solution with a =0:
                      ◦
                                                       λ(3–2k)–2     λ(k+1)–2

                                          λ(k–1)  d     b  t  2  dt     t  s  2  f(s) ds
                                y(x)= –Ax  2                                      ,
                                                                             1–k
                                                             1–k
                                               dx  x  (t – x ) 2  0   (t – s ) 2
                                                       λ
                                                                           λ
                                                                       λ
                                                           λ
                                              λ 2     πk  
       1+ k  
	 –2
                                         A =    cos      Γ(k) Γ          ,
                                             2π      2            2
                     where Γ(k) is the gamma function.
                       1
                           y(t)
               33.                dt = f(x),   0 < k <1,  λ >0,   m >0.
                      0 |x – t |
                          λ
                              m k
                     The transformation
                                                                  1–m
                                               λ      m
                                          z = x ,  τ = t ,  w(τ)= τ m y(t)
                     leads to an equation of the form 3.8.30:
                                           w(τ)                         1/λ
                                          1
                                          |z – τ| k  dτ = F(z),  F(z)= mf(z  ).
                                        0
                 © 1998 by CRC Press LLC




               © 1998 by CRC Press LLC
                                                                                                             Page 205
   221   222   223   224   225   226   227   228   229   230   231