Page 531 - Handbook Of Integral Equations
P. 531

If these conditions are satisfied, then the boundary value problem (6) becomes

                                      r

                                       (u – a i ) R + (u)R – (u)
                                             α i
                               +
                                                                –
                             Y (u)=  i=1                 D 2 (u)Y (u)+  H 1 (u)  .
                                      s                               s

                                       (u – b j ) Q + (u)Q – (u)        (u – b j ) β j
                                             β j
                                     j=1                             j=1
               The solution was given above in Subsection 10.4-7. For the case in which η ≥ 0(µ ≥ λ), this solution
               can be rewritten in the form
                                                r
                                                                 +
                                                          R – (z)  G (z)
                                          +
                                   +
                                  Y (z)= V (z)+   (z – a i ) α i  e  P ν–n+1 (z),
                                                          Q – (z)
                                                i=1
                                                s                                          (10)
                                                          Q + (z)  G (z)
                                                                 –
                                   –
                                          –
                                  Y (z)= V (z)+   (z – b j ) β j  e  P ν–n+1 (z).
                                                          R + (z)
                                               j=1
                   For the case in which η <0 (µ < λ), this solution becomes
                                                r
                                                          R – (z)  +
                                   +
                                          +
                                  Y (z)= V (z)+   (z – a i ) α i  e G (z) P h–m–1 (z),
                                          1
                                                          Q – (z)
                                               i=1
                                                s                                          (11)
                                                          Q + (z)  –
                                   –
                                          –
                                  Y (z)= V (z)+  (z – b j ) β j  e G (z) P h–m–1 (z).
                                          1
                                                          R + (z)
                                               j=1
                   In both cases, the solution of the original integral equation can be obtained by substituting the
               expressions (10) and (11) into the formula

                                             1    ∞   +      –    –iux
                                      y(x)= √       [Y (u) – Y (u)]e  du.                  (12)
                                             2π  –∞
                   Example. Consider the following equation of the first kind:
                                   1     ∞             1     0
                                 √       K 1 (x – t)y(t) dt + √  K 2 (x – t)y(t) dt = f(x),
                                   2π  0               2π  –∞
               where
                                                  √
                        0          for x >0,      – 2πie –2x  for x >0,    0        for x >0,
                K 1 (x)=  √  3x  2x        K 2 (x)=               f(x)=  √   3x  2x        (13)
                         2π (e  – e ) for x <0,   0       for x <0,       2π (e  – e ) for x <0.
               Applying the Fourier transform to the functions in (13), we obtain
                                          1              1               1
                               K 1 (u)=        ,  K 2 (u)=  ,  F(u)=          .
                                     (u – 2i)(u – 3i)   u +2i       (u – 2i)(u – 3i)
               Here the boundary value problem (6) becomes
                                                 (u – 2i)(u – 3i)
                                                             –
                                            +
                                           Y (u)=           Y (u)+1.
                                                    u +2i
                   The coefficient D(u) has a first-order pole at infinity (ν = –1). In this case
                                  m + =2,  n + =0,  ν = m + – n + = 2,  min(λ, µ)=1,  d =2.
               The function F(u) has second-order zero at infinity, and hence the necessary condition for the solvability is satisfied.
                   In the class of functions that vanish at infinity, the homogeneous problem
                                                   (u – 2i)(u – 3i)
                                                              –
                                              +
                                             Y (u)=          Y (u)
                                                      u +2i
                 © 1998 by CRC Press LLC





               © 1998 by CRC Press LLC
                                                                                                             Page 513
   526   527   528   529   530   531   532   533   534   535   536