Page 735 - Handbook Of Integral Equations
P. 735

Supplement 5


               Tables of Inverse Laplace Transforms





               5.1. General Formulas

                                                                           1     c+i∞  px ˜
                                          ˜
                 No       Laplace transform, f(p)   Inverse transform, f(x)=        e f(p) dp
                                                                          2πi
                                                                               c–i∞
                      ˜
                  1   f(p + a)                      e –ax f(x)
                                                        x
                                                    1
                      ˜
                  2   f(ap),  a >0                    f
                                                    a   a
                                                                  x
                                                    1       b
                      ˜
                  3   f(ap + b),  a >0                exp – x f
                                                    a      a      a
                               ˜
                      ˜
                  4   f(p – a)+ f(p + a)            2f(x) cosh(ax)
                              ˜
                      ˜
                  5   f(p – a) – f(p + a)           2f(x) sinh(ax)

                                                      0       if 0 ≤ x < a,
                      –ap ˜
                  6   e  f(p),  a ≥ 0
                                                      f(x – a)if a < x.
                                                    df(x)
                       ˜
                  7   pf(p)                              ,  if f(+0) = 0
                                                     dx
                      1                                x
                        ˜
                  8    f(p)                            f(t) dt
                      p                              0
                       1                             –ax     x  at
                           ˜
                  9       f(p)                      e      e f(t) dt
                      p + a
                                                         0
                                                      x

                      1
                         ˜
                 10    2  f(p)                         (x – t)f(t) dt
                      p                              0
                        ˜
                       f(p)                         1     x     a(x–t)
                 11                                       1 – e    f(t) dt
                      p(p + a)                      a  0
                        ˜
                       f(p)                            x     –a(x–t)
                 12                                    (x – t)e   f(t) dt
                      (p + a) 2                      0
                          ˜
                         f(p)                         1     x    –a(x–t)  –b(x–t)
                 13                                          e     – e     f(t) dt
                      (p + a)(p + b)                b – a  0
                          ˜
                         f(p)                       1     x  –a(x–t)
                 14                                      e     sin b(x – t) f(t) dt
                           2
                      (p + a) + b 2                 b  0
                                                             x
                      1                                1           n–1

                         ˜
                 15    n  f(p),  n =1, 2, ...                 (x – t)  f(t) dt
                      p                             (n – 1)!
                                                            0
                                                      x

                      ˜
                          ˜
                 16   f 1 (p)f 2 (p)                   f 1 (t)f 2 (x – t) dt
                                                     0
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 719
   730   731   732   733   734   735   736   737   738   739   740