Page 740 - Handbook Of Integral Equations
P. 740

1     c+i∞  px ˜
                                          ˜
                 No       Laplace transform, f(p)   Inverse transform, f(x)=        e f(p) dp
                                                                          2πi
                                                                               c–i∞
                         1                           1
                 54     2  2 2                          sin(ax) – ax cos(ax)
                      (p + a )                      2a 3
                         p                           1
                 55     2  2 2                         x sin(ax)
                      (p + a )                      2a
                         p 2                         1
                 56                                    sin(ax)+ ax cos(ax)
                           2 2
                        2
                      (p + a )                      2a
                         p 3                                1
                 57                                 cos(ax) – ax sin(ax)
                                                            2
                           2 2
                        2
                      (p + a )
                            1                        1
                 58                2                   e –bx    sin(ax) – ax cos(ax)
                       (p + b) + a 2                2a 3
                            2
                            1                         1      1        1
                 59                                          sinh(ax) –  sinh(bx)
                           2
                      (p – a )(p – b )              a – b 2  a        b
                        2
                              2
                                  2
                                                     2
                            p                       cosh(ax) – cosh(bx)
                 60     2  2  2   2
                      (p – a )(p – b )                    a – b 2
                                                           2
                            p 2                     a sinh(ax) – b sinh(bx)
                 61
                                                            2
                              2
                                  2
                           2
                        2
                      (p – a )(p – b )                    a – b 2
                                                                2
                                                     2
                            p 3                     a cosh(ax) – b cosh(bx)
                 62     2  2  2   2
                                                             2
                      (p – a )(p – b )                      a – b 2
                            1                         1      1       1
                 63                                          sin(ax) –  sin(bx)
                           2
                        2
                                  2
                               2
                      (p + a )(p + b )              b – a 2  a       b
                                                     2
                            p                       cos(ax) – cos(bx)
                 64     2  2   2  2
                      (p + a )(p + b )                   b – a 2
                                                         2
                            p 2                     –a sin(ax)+ b sin(bx)
                 65
                               2
                                  2
                                                           2
                        2
                           2
                      (p + a )(p + b )                    b – a 2
                                                                2
                                                      2
                            p 3                     –a cos(ax)+ b cos(bx)
                 66     2  2   2  2
                      (p + a )(p + b )                     b – a 2
                                                            2
                      1                                1    n–1
                 67     ,  n =1, 2, ...                    x
                      p n                           (n – 1)!
                         1                             1    n–1 –ax
                 68        n  ,  n =1, 2, ...              x  e
                      (p + a)                       (n – 1)!
                         1                                                       z        z n
                 69         n  ,  n =1, 2, ...      a –n  1 – e –ax e n (ax) ,  e n (z)=1 +  + ··· +
                      p(p + a)                                                   1!       n!
                                                           n
                                                       1
                                                    –        exp(a k x) a k cos(b k x) – b k sin(b k x) ,
                         1                           na 2n
                 70    2n   2n  ,  n =1, 2, ...           k=1
                      p  + a                                                     π(2k – 1)
                                                    a k = a cos ϕ k , b k = a sin ϕ k , ϕ k =
                                                                                   2n
                                                                         n
                                                      1              1
                                                          sinh(ax)+        exp(a k x)
                                                    na 2n–1         na 2n
                         1                                              k=2
                 71           ,  n =1, 2, ...
                      p 2n  – a 2n                  × a k cos(b k x) – b k sin(b k x) ,
                                                                                 π(k – 1)
                                                    a k = a cos ϕ k , b k = a sin ϕ k , ϕ k =
                                                                                   n
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 724
   735   736   737   738   739   740   741   742   743   744   745