Page 741 - Handbook Of Integral Equations
P. 741

1     c+i∞  px ˜
                                          ˜
                 No       Laplace transform, f(p)   Inverse transform, f(x)=        e f(p) dp
                                                                          2πi
                                                                               c–i∞
                                                                             n
                                                       e –ax         2
                                                              –                exp(a k x)
                                                    (2n +1)a 2n  (2n +1)a 2n+1
                           1                                                k=1
                 72    2n+1  2n+1  ,  n =0, 1, ...
                      p    + a                      × a k cos(b k x) – b k sin(b k x) ,
                                                                                 π(2k – 1)
                                                    a k = a cos ϕ k , b k = a sin ϕ k , ϕ k =
                                                                                  2n +1
                                                                             n
                                                        e ax         2
                                                              +                exp(a k x)
                                                    (2n +1)a 2n  (2n +1)a 2n+1
                           1                                                k=1
                 73    2n+1  2n+1  ,  n =0, 1, ...
                      p    – a                      × a k cos(b k x) – b k sin(b k x) ,
                                                                                  2πk
                                                    a k = a cos ϕ k , b k = a sin ϕ k , ϕ k =
                                                                                 2n +1
                      Q(p)
                          ,                          n
                      P(p)                              Q(a k )  exp a k x ,


                 74   P(p)=(p – a 1 ) ... (p – a n );  P (a k )

                      Q(p) is a polynomial of degree  k=1
                                                    (the prime stand for the differentiation)
                      ≤ n – 1; a i ≠ a j if i ≠ j
                      Q(p)
                          ,                          n  m k
                      P(p)                                    Φ kl (a k )  x m k –l  exp a k x ,


                      P(p)=(p – a 1 ) m 1  ... (p – a n ) m n ;  (m k – l)! (l – 1)!
                 75                                 k=1 l=1
                      Q(p) is a polynomial of degree        d l–1     Q(p)          P(p)
                      < m 1 + m 2 + ··· + m n – 1;  Φ kl (p)=  dp l–1  ,  P k (p)=      m k
                      a i ≠ a j if i ≠ j                          P k (p)        (p – a k )
                      Q(p)+ pR(p)                    n
                                 ,                     Q(ia k ) sin(a k x)+ a k R(ia k ) cos(a k x)
                         P(p)                                     a k P k (ia k )     ,
                                       2
                                           2
                                 2
                             2
                 76   P(p)=(p + a ) ... (p + a );   k=1
                                           n
                                 1
                      Q(p) and R(p) are polynomials  P m (p)=  P(p)  ,  i = –1
                                                                      2
                                                             2
                      of degree ≤ 2n – 2; a l ≠ a j , l ≠ j  p + a 2 m
               5.3. Expressions With Square Roots
                                                                           1     c+i∞  px ˜
                                          ˜
                 No       Laplace transform, f(p)   Inverse transform, f(x)=        e f(p) dp
                                                                          2πi
                                                                               c–i∞
                       1                              1
                  1   √                             √
                        p                             πx
                      √      	                      e bx  – e ax
                  2    p – a –  p – b                 √
                                                     2 πx 3
                        1                             1   –ax
                  3   √                             √    e
                        p + a                         πx

                        p + a                          –ax/2
                  4          – 1                    1 2  ae  I 1  1 2  ax + I 0  1 2  ax
                         p
                      √                              –ax
                        p + a                       e           1/2 –bx       1/2 1/2
                  5                                 √    +(a – b)  e  erf (a – b)  x
                       p + b                          πx
                 © 1998 by CRC Press LLC






               © 1998 by CRC Press LLC
                                                                                                             Page 725
   736   737   738   739   740   741   742   743   744   745   746