Page 746 - Handbook Of Integral Equations
P. 746

1     c+i∞  px ˜
                                          ˜
                 No       Laplace transform, f(p)   Inverse transform, f(x)=        e f(p) dp
                                                                          2πi
                                                                               c–i∞
                      1                             f(x)=(2n – 1) if 2a(n – 1) < x <2an;
                 12     coth(ap),  a >0
                      p                             n =1, 2, ...
                                                    1
                 13   Arcoth(p/a)                     sinh(ax)
                                                    x
               5.7. Expressions With Logarithmic Functions


                                                                           1     c+i∞  px ˜
                                          ˜
                 No       Laplace transform, f(p)   Inverse transform, f(x)=        e f(p) dp
                                                                          2πi
                                                                               c–i∞
                      1                             – ln x – C,
                  1     ln p
                      p                             C = 0.5772 ... is the Euler constant
                                                                              x n
                                                        1  1       1
                  2   p –n–1  ln p                   1+  2  +  3  + ··· +  n  – ln x – C  n!  ,
                                                    C = 0.5772 ... is the Euler constant
                                                          2   2       2               n–1/2
                                                    k n 2+  +  + ··· +   – ln(4x) – C x  ,
                                                          3   5      2n–1
                  3   p –n–1/2  ln p                             2 n
                                                    k n =               √ ,   C = 0.5772 ...
                                                         1 ⋅ 3 ⋅ 5 ... (2n – 1) π
                                                      1  ν–1
                  4   p –ν  ln p,  ν >0             Γ(ν) x   ψ(ν) – ln x ,  ψ(ν) is the logarithmic
                                                    derivative of the gamma function
                      1    2                               2     2
                                                              1
                  5    (ln p)                       (ln x + C) – π ,  C = 0.5772 ...
                                                              6
                      p
                      1     2                                   2       2
                                                                      1
                  6    2  (ln p)                    x (ln x + C – 1) +1 – π
                                                                      6
                      p
                      ln(p + b)                      –ax
                  7                                 e    ln(b – a) – Ei (a – b)x }
                       p + a
                       ln p                         1               1
                  8    2   2                          cos(ax) Si(ax)+  sin(ax) ln a – Ci(ax)
                      p + a                         a               a
                       p ln p
                  9    2   2                        cos(ax) ln a – Ci(ax) – sin(ax) Si(ax)
                      p + a
                        p + b                       1    –ax  –bx
                 10   ln                               e   – e
                        p + a                       x
                         2
                        p + b 2                     2
                 11   ln                               cos(ax) – cos(bx)
                         2
                        p + a 2                     x
                          2
                         p + b 2                    2
                 12   p ln                             cos(bx)+ bx sin(bx) – cos(ax) – ax sin(ax)
                          2
                         p + a 2                    x
                             2
                        (p + a) + k 2               2         –bx  –ax
                 13   ln     2   2                    cos(kx)(e  – e
                        (p + b) + k                 x
                          1                          1              a

                              2
                 14   p ln   p + a 2                   cos(ax) – 1 +  sin(ax)
                          p                         x 2             x
                          1                          1              a

                              2
                 15   p ln   p – a 2                   cosh(ax) – 1 –  sinh(ax)
                          p                         x 2             x
                 © 1998 by CRC Press LLC





               © 1998 by CRC Press LLC
                                                                                                             Page 730
   741   742   743   744   745   746   747   748   749   750   751