Page 198 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 198

Chapter 6 Plant leaf disease classification based on feature selection  187






                                        Table 6.12 Performance comparison of all models.


                      Models
                                                    Class        1         2         3          4
                      AlexNet w/o transfer learning  Recall      1.00      0.33      1.00       0.33
                                                    Precision    0.76      0.80      1.00       0.75
                                                    F1-score     0.86      0.47      1.00       0.46
                      VGG16 w/o transfer learning   Recall       0.92      0.42      0.89       0.44
                                                    Precision    0.69      0.63      1.00       1.00
                                                    F1-score     0.79      0.50      0.94       0.62
                      ResNet-18 w/o transfer learning  Recall    0.59      0.74      1.00       0.67
                                                    Precision    0.67      0.74      0.87       0.75
                                                    F1-score     0.63      0.74      0.93       0.71
                      ResNet-50 w/o transfer learning  Recall    0.97      0.07      0.85       0.00
                                                    Precision    0.58      1.00      0.92       0.00
                                                    F1-score     0.72      0.13      0.88       0
                      AlexNet with transfer learning  Recall     0.94      0.75      1.00       0.15
                                                    Precision    0.76      0.71      0.90       1.00
                                                    F1-score     0.84      0.73      0.95       0.27
                      VGG16 with transfer learning  Recall       0.93      0.50      0.97       0.33
                                                    Precision    0.72      0.80      1.00       0.36
                                                    F1-score     0.81      0.62      0.98       0.35
                      ResNet-18 with transfer learning  Recall   0.97      0.68      0.77       0.44
                                                    Precision    0.68      1.00      1.00       0.80
                                                    F1-score     0.80      0.81      0.87       0.57
                      ResNet-50 with transfer learning  Recall   1.00      0.31      1.00       0.56
                                                    Precision    0.74      1.00      1.00       0.63
                                                    F1-score     0.85      0.47      1.00       0.59
                      MLP                           Recall       0.97      0.65      0.82       0.50
                                                    Precision    0.74      1.00      0.95       0.57
                                                    F1-score     0.84      0.79      0.88       0.53
                      MLP, multilayer perceptron.



               References
                [1] R. Yamashita, M. Nishio, R.K.G. Do, K. Togashi, Convolutional neural
                   networks: an overview and application in radiology, Insights Imaging
                   (2018), https://doi.org/10.1007/s13244-018-0639-9.
                [2] M.H. Saleem, J. Potgieter, K.M. Arif, Plant disease detection and
                   classification by deep learning, Plants (2019), https://doi.org/10.3390/
                   plants8110468.
   193   194   195   196   197   198   199   200   201   202   203