Page 199 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 199

188   Chapter 6 Plant leaf disease classification based on feature selection




                                     [3] K.P. Ferentinos, Deep learning models for plant disease detection and
                                       diagnosis, Comput. Electron. Agric. (2018), https://doi.org/10.1016/
                                       j.compag.2018.01.009.
                                     [4] A.K. Rangarajan, R. Purushothaman, A. Ramesh, Tomato crop disease
                                       classification using pre-trained deep learning algorithm, Proced. Comput.
                                       Sci. (2018), https://doi.org/10.1016/j.procs.2018.07.070.
                                     [5] D.P. Hughes, M. Salath  e, An Open Access Repository of Images on Plant
                                       Health to Enable the Development of Mobile Disease Diagnostics, 2015
                                       [Online]. Available: arxiv:1511.08060.
                                     [6] S.D. Khirade, A.B. Patil, Plant disease detection using image processing, in:
                                       Proceedings - 1st International Conference on Computing, Communication,
                                       Control and Automation, ICCUBEA 2015, 2015, https://doi.org/10.1109/
                                       ICCUBEA.2015.153.
                                     [7] V. Singh, A.K. Misra, Detection of plant leaf diseases using image
                                       segmentation and soft computing techniques, Inf. Process. Agric. (2017),
                                       https://doi.org/10.1016/j.inpa.2016.10.005.
                                     [8] L. Yu, H. Liu, Efficient feature selection via analysis of relevance and
                                       redundancy, J. Mach. Learn. Res. 5 (2004) 1205e1224.
                                     [9] J.O. Pedersen, Y. Yang, A comparative study on feature selection in text
                                       categorization, in: Proceeding ICML ’97 Proc. Fourteenth Int. Conf. Mach.
                                       Learn., 1997, https://doi.org/10.1093/bioinformatics/bth267.
                                    [10] K. Yan, D. Zhang, Feature selection and analysis on correlated gas sensor
                                       data with recursive feature elimination, Sensor. Actuator. B Chem. (2015),
                                       https://doi.org/10.1016/j.snb.2015.02.025.
                                    [11] A. Jain, Feature selection: evaluation, application, and small sample
                                       performance, IEEE Trans. Pattern Anal. Mach. Intell. (1997), https://doi.org/
                                       10.1109/34.574797.
                                    [12] G. Maragatham, S.M. Mansoor Roomi, A review of image contrast
                                       enhancement methods and techniques, Res. J. Appl. Sci. Eng. Technol.
                                       (2015), https://doi.org/10.19026/rjaset.9.1409.
                                    [13] M.A. Rahman, S. Liu, C.Y. Wong, G. Jiang, N. Kwok, Image contrast
                                       enhancement for brightness preservation based on dynamic stretching, Int.
                                       J. Image Process. 9 (4) (2015) 241e253.
                                    [14] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
                                       convolutional neural networks, in: Advances in Neural Information
                                       Processing Systems, 2012.
                                    [15] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
                                       scale image recognition, in: 3rd International Conference on Learning
                                       Representations, ICLR 2015 - Conference Track Proceedings, 2015.
                                    [16] S. Ren, J. Sun, K. He, X. Zhang, Deep residual learning for image
                                       recognition, in: 2016 IEEE Conference on Computer Vision and Pattern
                                       Recognition (CVPR), Las Vegas, NV, 2016, pp. 770e778, https://doi.org/
                                       10.1109/CVPR.2016.90.
                                    [17] K. Zuiderveld, Contrast limited adaptive histogram equalization, in:
                                       Graphics Gems, 1994.
                                    [18] J. Kennedy, R. Eberhart, 47-Particle swarm optimization proceedings,
                                       IEEE international conference, in: Proc. ICNN’95 - Int. Conf. Neural
                                       Networks, 1995.
                                    [19] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw.
                                       (2014), https://doi.org/10.1016/j.advengsoft.2013.12.007.
                                    [20] F.A. Senel, F. Gökçe, A.S. Y€ uksel, T. Yi  git, A novel hybrid PSOeGWO
                                       algorithm for optimization problems, Eng. Comput. (2019), https://doi.org/
                                       10.1007/s00366-018-0668-5.
   194   195   196   197   198   199   200   201   202   203   204