Page 199 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 199
188 Chapter 6 Plant leaf disease classification based on feature selection
[3] K.P. Ferentinos, Deep learning models for plant disease detection and
diagnosis, Comput. Electron. Agric. (2018), https://doi.org/10.1016/
j.compag.2018.01.009.
[4] A.K. Rangarajan, R. Purushothaman, A. Ramesh, Tomato crop disease
classification using pre-trained deep learning algorithm, Proced. Comput.
Sci. (2018), https://doi.org/10.1016/j.procs.2018.07.070.
[5] D.P. Hughes, M. Salath e, An Open Access Repository of Images on Plant
Health to Enable the Development of Mobile Disease Diagnostics, 2015
[Online]. Available: arxiv:1511.08060.
[6] S.D. Khirade, A.B. Patil, Plant disease detection using image processing, in:
Proceedings - 1st International Conference on Computing, Communication,
Control and Automation, ICCUBEA 2015, 2015, https://doi.org/10.1109/
ICCUBEA.2015.153.
[7] V. Singh, A.K. Misra, Detection of plant leaf diseases using image
segmentation and soft computing techniques, Inf. Process. Agric. (2017),
https://doi.org/10.1016/j.inpa.2016.10.005.
[8] L. Yu, H. Liu, Efficient feature selection via analysis of relevance and
redundancy, J. Mach. Learn. Res. 5 (2004) 1205e1224.
[9] J.O. Pedersen, Y. Yang, A comparative study on feature selection in text
categorization, in: Proceeding ICML ’97 Proc. Fourteenth Int. Conf. Mach.
Learn., 1997, https://doi.org/10.1093/bioinformatics/bth267.
[10] K. Yan, D. Zhang, Feature selection and analysis on correlated gas sensor
data with recursive feature elimination, Sensor. Actuator. B Chem. (2015),
https://doi.org/10.1016/j.snb.2015.02.025.
[11] A. Jain, Feature selection: evaluation, application, and small sample
performance, IEEE Trans. Pattern Anal. Mach. Intell. (1997), https://doi.org/
10.1109/34.574797.
[12] G. Maragatham, S.M. Mansoor Roomi, A review of image contrast
enhancement methods and techniques, Res. J. Appl. Sci. Eng. Technol.
(2015), https://doi.org/10.19026/rjaset.9.1409.
[13] M.A. Rahman, S. Liu, C.Y. Wong, G. Jiang, N. Kwok, Image contrast
enhancement for brightness preservation based on dynamic stretching, Int.
J. Image Process. 9 (4) (2015) 241e253.
[14] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, in: Advances in Neural Information
Processing Systems, 2012.
[15] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
scale image recognition, in: 3rd International Conference on Learning
Representations, ICLR 2015 - Conference Track Proceedings, 2015.
[16] S. Ren, J. Sun, K. He, X. Zhang, Deep residual learning for image
recognition, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, 2016, pp. 770e778, https://doi.org/
10.1109/CVPR.2016.90.
[17] K. Zuiderveld, Contrast limited adaptive histogram equalization, in:
Graphics Gems, 1994.
[18] J. Kennedy, R. Eberhart, 47-Particle swarm optimization proceedings,
IEEE international conference, in: Proc. ICNN’95 - Int. Conf. Neural
Networks, 1995.
[19] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw.
(2014), https://doi.org/10.1016/j.advengsoft.2013.12.007.
[20] F.A. Senel, F. Gökçe, A.S. Y€ uksel, T. Yi git, A novel hybrid PSOeGWO
algorithm for optimization problems, Eng. Comput. (2019), https://doi.org/
10.1007/s00366-018-0668-5.