Page 226 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 226
216 Chapter 7 Early detection and diagnosis using deep learning
Conference on Computer Vision and Pattern Recognition, 2018, https://
doi.org/10.1109/cvpr.2018.00865.
[17] S. Chilamkurthy, R. Ghosh, S. Tanamala, M. Biviji, N.G. Campeau,
V.K. Venugopal, et al., Deep learning algorithms for detection of critical
findings in head CT scans: a retrospective study, Lancet 392 (2018)
2388e2396.
[18] E.J. Hwang, S. Park, K.-N. Jin, J.I. Kim, S.Y. Choi, J.H. Lee, et al.,
Development and validation of a deep learning-based automated detection
algorithm for major thoracic diseases on chest radiographs, JAMA Netw.
Open 2 (2019) e191095.
[19] J. De Fauw, J.R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev,
S. Blackwell, et al., Clinically applicable deep learning for diagnosis and
referral in retinal disease, Nat. Med. 24 (2018) 1342e1350.
[20] V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy, et
al., Development and validation of a deep learning algorithm for detection
of diabetic retinopathy in retinal fundus photographs, J. Am. Med. Assoc.
316 (2016) 2402e2410.
[21] M.D. Abràmoff, P.T. Lavin, M. Birch, N. Shah, J.C. Folk, Pivotal trial of an
autonomous AI-based diagnostic system for detection of diabetic
retinopathy in primary care offices, NPJ Digit. Med. 1 (2018) 39, https://
doi.org/10.1038/s41746-018-0040-6.
[22] V. Bellemo, Z.W. Lim, G. Lim, Q.D. Nguyen, Y. Xie, M.Y.T. Yip, et al.,
Artificial intelligence using deep learning to screen for referable and vision-
threatening diabetic retinopathy in Africa: a clinical validation study, Lancet
Digit. Health 1 (2019) e35e44.
[23] Y. Kanagasingam, D. Xiao, J. Vignarajan, A. Preetham, M.-L. Tay-Kearney,
A. Mehrotra, Evaluation of artificial intelligence-based grading of diabetic
retinopathy in primary care, JAMA Netw. Open 1 (2018) e182665, https://
doi.org/10.1001/jamanetworkopen.2018.2665.
[24] R. Lindsey, A. Daluiski, S. Chopra, A. Lachapelle, M. Mozer, S. Sicular, et al.,
Deep neural network improves fracture detection by clinicians, Proc. Natl.
Acad. Sci. U S A 115 (2018) 11591e11596.
[25] Y. Liu, T. Kohlberger, M. Norouzi, G.E. Dahl, J.L. Smith, A. Mohtashamian,
et al., Artificial intelligence-based breast cancer nodal metastasis detection:
insights into the black box for pathologists, Arch. Pathol. Lab Med. 143 (7)
(2018) 859e868, https://doi.org/10.5858/arpa.2018-0147-oa.
[26] D.F. Steiner, R. MacDonald, Y. Liu, P. Truszkowski, J.D. Hipp, C. Gammage,
et al., Impact of deep learning assistance on the histopathologic review of
lymph nodes for metastatic breast cancer, Am. J. Surg. Pathol. 42 (2018)
1636e1646.
[27] E. Long, H. Lin, Z. Liu, X. Wu, L. Wang, J. Jiang, et al., An artificial
intelligence platform for the multihospital collaborative management of
congenital cataracts, Nat. Biomed. Eng. 1 (2017) 0024, https://doi.org/
10.1038/s41551-016-0024.
[28] P. Wang, X. Xiao, J.R. Glissen Brown, T.M. Berzin, M. Tu, F. Xiong, et al.,
Development and validation of a deep-learning algorithm for the detection
of polyps during colonoscopy, Nat. Biomed. Eng. 2 (2018) 741e748, https://
doi.org/10.1038/s41551-018-0301-3.
[29] Y. Mori, S.-E. Kudo, M. Misawa, Y. Saito, H. Ikematsu, K. Hotta, et al., Real-
time use of artificial intelligence in identification of diminutive polyps
during colonoscopy, Ann. Intern. Med. 169 (2018) 357, https://doi.org/
10.7326/m18-0249.