Page 279 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 279

270   Chapter 9 Applications of deep learning in biomedical engineering




                                    [23] M. Vailati-Riboni, V. Palombo, J.J. Loor, What Are Omics Sciences, Springer
                                       International Publishing Switzerland, 2017, https://doi.org/10.1007/978-3-
                                       319-43033-1.
                                    [24] G. Eraslan, Z. Avsec, J. Gagneur, et al., Deep learning: new computational
                                       modelling techniques for genomics, Nat. Rev. Genet. 20 (2019) 389e403,
                                       https://doi.org/10.1038/s41576-019-0122-6.
                                    [25] R. Nikam, K. Yugandhar, M. Michael Gromiha, Discrimination and
                                       Prediction of Protein-Protein Binding Affinity Using Deep Learning
                                       Approach, Springer, 2018, pp. 809e815, https://doi.org/10.1007/978-3-319-
                                       95933-7_89.
                                    [26] https://en.wikipedia.org/wiki/RNA-binding_protein.
                                    [27] https://www.nature.com/scitable/topicpage/gene-expression-14121669/.
                                    [28] https://www.medicinenet.com/script/main/art.asp?articlekey¼16831.
                                    [29] N. Saraswathy, P. Ramalingam, Genome sequencing methods, in: Concepts
                                       and Techniques in Genomics and Proteomics, Elsevier, 2011, pp. 95e107.
                                    [30] G.L. Bosco, M.A. Di Gangi, Deep Learning Architectures for DNA Sequence
                                       Classification, Springer International Publishing, 2017, pp. 162e171, https://
                                       doi.org/10.1007/978-3-319-52962-214.
                                    [31] S. Chatterjee, A. Iyer, S. Avva, A. Kollara, M. Sankarasubbu, Convolutional
                                       Neural Networks in Classifying Cancer through DNA Methylation, arXiv
                                       preprint arXiv:1807.09617, 2018.
                                    [32] M. Torrisi, G. Pollastri, Q. Le, Deep learning methods in protein structure
                                       prediction, Comput. Struct. Biotechnol. J. (2019), https://doi.org/10.1016/
                                       j.csbj.2019.12.011. Elsevier.
                                    [33] https://en.wikipedia.org/wiki/Biomolecular_structure#Secondary_structure.
                                    [34] https://en.wikipedia.org/wiki/Protein_tertiary_structure.
                                    [35] https://en.wikipedia.org/wiki/Loop_modeling.
                                    [36] T. Sevimoglu, K.Y. Arga, The role of protein interaction networks in systems
                                       biomedicine, Comput. Struct. Biotechnol. J. 11 (Issue 18) (August 2014)
                                       22e27, https://doi.org/10.1016/j.csbj.2014.08.008. Elsevier.
                                    [37] H. Umbrin, S. Latif, A survey on protein protein interactions (PPI) methods,
                                       databases, challenges and future directions, in: International Conference on
                                       Computing, Mathematics and Engineering Technologies, IEEE, April 26,
                                       2018, https://doi.org/10.1109/ICOMET.2018.8346326.
                                    [38] H. Liu, J. Sun, J. Guan, J. Zheng, S. Zhou, Improving compoundeprotein
                                       interaction prediction by building up highly credible negative samples,
                                       Bioinformatics (2015), https://doi.org/10.1093/bioinformatics/btv256.
                                    [39] M. Patil, V.B. Lobo, P. Puranik, A. Pawaskar, A. Pai, R. Mishra, A proposed
                                       model for lifestyle disease prediction using support vector machine, in: 9th
                                       ICCCNT, 2018.
                                    [40] Q. Tao, F. Liu, Y. Li, D. Sidorov, Air Pollution Forecasting Using A Deep
                                       Learning Model Based on 1d Convnets and Bidirectional GRU, vol. 7, IEEE,
                                       2019.
                                    [41] B. Felbo, P. Sundsoy, A.S. Pentland, S. Lehmann, Y.-A. de Montjoye, Using
                                       deep learning to predict demographics from mobile phone metadata, in:
                                       Workshop Track e ICLR, 2016.
   274   275   276   277   278   279   280   281   282   283   284