Page 226 - Handbook of Lasers
P. 226

3+
                         193.  Többen, H., Room temperature cw fibre laser at 3.5  mm  in  Er -doped  ZBLAN  glass,
                               Electron. Lett. 28, 1361 (1992).
                         194.  Schneider, J., Fluoride fibre laser operating at 3.9 mm, Electron. Lett. 31, 1250 (1995).
                         195.  Mackechnie, C. J., Barnes, W. L., Carman, R. J., Townsend, J. E., and Hanna, D. C., High
                               power ytterbium doped fiber laser operating at around 1.2 mm, in Advanced Solid-State
                               Lasers, Pinto, A. A. and Fan, T. Y., Eds., Proceedings Vol. 15, Optical Society of America,
                               Washington, DC (1993), p. 192.
                         196.  Jiang, S., Myers, J., Belford, R., Rhonehouse, D., Myers, M., and Hamlin, S., Flashlamp
                               pumped lasing of Ho:germanate glass at room temperature,  OSA Proc. Adv. Solid State
                               Lasers, Fan, T. Y. and Chai, B. H. T., Eds., Proceedings Vol. 20, 116 (1995).
                                                                                            4
                                                                                       4
                         197.  Miura, K., Tanaka, K., and Hirao, K., CW laser oscillation on both the  F 3/2 – I 11/2   and
                               4 F 3/2 – I 13/2  transitions of Nd  ions using a fluoride glass microsphere,  J. Non-Cryst.
                                   4
                                                      3+
                               Solids 213&214, 276 (1997).
                         198.  Basu, S. and Byer, R. L., Continuous-wave mode-locked Nd:glass laser pumped by a laser
                               diode, Optics Lett. 13, 458 (1988).
                         199.  Nakazawa, M. and Kimura, Y., Simultaneous oscillation at 0.91, 1.08, and 1.53  mm in a
                               fusion-sliced fiber laser, Appl. Phys. Lett. 51, 1768 (1987).
                         200.  Avakyants, L. I., Karpova, M. L., and Radchenko, V. V., Lasing properties of a multifiber
                                 3+
                               Nd -activated glass laser, Sov. J. Quantum Electron. 17, 553 (1987).
                                                                              3+
                         201.  Reekie, L., Mears, R. J., Poole, S. B., and Payne, D. M., A Pr -doped single-mode fibre
                               laser, IEE Symp., May 1986.
                         202.  DeShazer, L. G., Cuprous ion doped crystals for tunable lasers, in  Tunable Solid State
                               Lasers, Hammerling, P., Budgar, A. B., and Pinto, A., Eds., Springer-Verlag, Berlin (1985),
                               p. 91.
                                                                                       3+
                         203.  Ugawa, T. S., Komukai, T., and Miyajuina, Y., Optical amplification in Er  doped single
                               mode fluoride fiber, IEEE Phot. Techn. Lett. 2, 475 (1990).
                         204.  Whitney, T. J., Millar, C. A., Brierley, M. C., and Carter, S. F., 23 dB gain upconversion
                               pumped erbium doped fiber amplifier operating at 850 nm, Electron. Lett. 27, 189 (1991).
                         205.  Nakazawa, M., Kimura, Y., and Suzuki, K., High gain erbium fiber amplifier pumped by 800
                               nm band, Electron. Lett. 26, 548 (1990).
                                                                           3+
                         206.  Nakazawa, M., Kimura, Y., and Suzuki, K., Efficient Er -doped optical fiber amplifier
                               pumped by a 1.48 mm InGaAsP laser diode, Appl. Phys. Lett. 54, 295 (1989).
                         207.  Horiguchi, H., Shimizu, M., Yamada, M., Yoshino, K., and Hanafusa, H.,  Highly efficient
                               optical fiber amplifier pumped by a 0.8 nm band laser diode,  Electron. Lett.  26, 1758
                               (1990).
                         208.  Tachibana, M., Laming, R. I., Morkel, P. R., and Payne, D. N., Gain cross saturation and
                               spectral hole burning in wideband erbium-doped fiber amplifiers,  Optics Lett.  16, 1499
                               (1991).
                         209.  Townsend, J. E., Barnes, W. L., Jedrzejewski, K. P., and Grubb, S. G., Yb 3+  sensitised Er 3+
                               doped silica optical fibre with ultrahigh transfer efficiency and gain,  Electron. Lett.  27,
                               1958 (1991).
                         210.  Doshida, M., Teraguchi. K., and Obara, M., Gain measurement and upconversion analysis
                                   3+
                                       3+
                               in Tm , Ho  co-doped alumino-zirco-fluoride glass, IEEE J. Quantum Electron. 31, 911
                               (1995).
                         211.  Shikida, A., Yanagita, H., and Toratani, H., Ho-Yb fluoride glass fiber for green lasers, in
                               Advanced Solid-State Lasers, Pinto, A. A. and Fan, T. Y., Eds., Proceedings Vol. 15,
                               Optical Society of America, Washington, DC (1993), p. 261.
                         212.  Mori, A., Ohishi, Y., Kanamori, T., and Sudo, S., Optical amplification with neodymium-
                               doped chalcogenide glass fiber, Appl. Phys. Lett. 70, 1230 (1997).
                         213.  Miyajima, Y., Sugawa, T., and Komukai, T., Efficient 1.3 mm-band amplification in a Nd 3+ -
                               doped single-mode fluoride fiber, Electron. Lett. 17, 1397 (1990).






                         ©2001 CRC Press LLC
   221   222   223   224   225   226   227   228   229   230   231