Page 306 - Handbook of Lasers
P. 306

119.  Chen, H. Z., Ghaflari, A., Wang, H., Morkoc, H., and Yariv, A., Continuous-wave operation
                               of  extremely  low-threshold  GaAs/AlGaAs  broad-area  injection  lasers  on  (100)  Si
                               substrates at room temperature, Optics Lett. 12, 812 (1987).
                         120.  Hall, R. N., Fenner, G. E., Kingley, J. D., Solbs, T. J., and Carlson, R. O., Coherent light
                               emission from GaAs junctions, Phys. Rev. Lett. 9, 366 (1962).
                         121.  Nathan, M. E., Dumke, W. P., Burns, C., Dill, Jr., F. H., and Lasher, G. J.,  Stimulated
                               emission of radiation from GaAs p-n junction, Appl. Phys. Lett. 1, 62 (1962).
                         122.  Scifres, D. R., Burnham, R. D., and Streifer, W., Distributed-feedback single heterojunction
                               GaAs diode laser, Appl. Phys. Lett. 25, 203 (1974).
                         123.  Susaki, W., Sogo, T., and Oku, T., Optical losses and efficiency in GaAs laser diodes, IEEE
                               J. Quantum Electron. QE-4, 122 (1968).
                         124.  Yang, R. Q., Yang, H. B., Lin, C.-H., Zhang, D., Murry, S. J., Wu, H., and Pei, S. S., High
                               power mid-infrared interband cascade lasers based on type-II quantum wells, Appl. Phys.
                               Lett. 71, 2409 (1997).
                         125.  Tell, B., Lee, Y. H., Brown-Goebeler, K. F. et al., High-power  cw  vertical-cavity  top
                               surface-emitting GaAS quantum well lasers, Appl. Phys. Lett. 57, 1855 (1990).
                         126.  Eliseev, P. G., Ismailo, I., and Mikhaillna, L. I., Coherent emission of InP optically excited
                               by an injection laser, JETP Lett. 6, 15 (1967).
                         127.  Yuen, W., Li, G. S., and Chang-Hasnain, C. J., Multiple-wavelength vertical-cavity surface-
                               emitting laser arrays with a record wavelength span, IEEE Phot. Technol. Lett. 8, 4 (1996).
                         128.  Weiser, K. and Levitt, R. S., Stimulated light emission from indium phosphide, Appl. Phys.
                               Lett. 2, 178 (1963).
                         129.  Basov, N. G., Eliseev, P. G., and Ismailov, I., Some properties of semiconductor lasers
                               based on indium phosphide, Sov. Phys. Solid State 8, 2087 (1967).
                         130.  Shoji, H., Ohtsuka, N., Sugawara, M., Uchida, T., and  Ishikawa,  H.,  Lasing  at  three-
                               dimensionally quantum-confined sublevel of self-organized In  Ga  As quantum dots by
                                                                              0.5  0.5
                               current injection, IEEE Phot. Tech. Lett. 7, 1385 (1995).
                         131.  Rossi, J. A. and Chinn, S. R., Efficient optically pumped InP and In Ga  As lasers, J. Appl.
                                                                                 x  1-x
                               Phys. 43, 4806 (1972).
                         132.  Slivken, S., Jelen, C., Rybaltowski, A., Diaz, J., and Razeghi, M., Gas-source molecular
                               beam epitaxy growth of an 8.5 mm quantum cascade laser, Appl. Phys. Lett. 71, 2593 (1997).
                         133.  Cingolani, A., Ferrara, M., Lugara, M., and Lévy, F., Stimulated photoluminescence in
                               indium selenide, Phys. Rev. B 25, 1174 (1982).
                         134.  Saito, H., Nishi, K., Ogura, I., Sugou, S., and Sugimoto,  Y.,  Room-temperature  lasing
                               operation of a quantum-dot vertical-cavity surface-emitting laser,  Appl. Phys. Lett. 69,
                               3140 (1996).
                         135.  Kurbatov, L, N.,  Dirochka,  A.  I.,  and  Britov,  A.  D.,  Stimulated  emission  of  indium
                               monoselenide subjected by  electron  bombardment,  Sov.  Phys.  Semiconductor  5,  494
                               (1971).
                         136.  Dutta, N. K., Hobson, W. S., Lopata, J., and Zydzik, G., Tunable InGaAs/GaAS/InGaP
                               laser, Appl. Phys. Lett. 70, 1219 (1997).
                         137.  Geels, R. S. and Coldren, L. A., Submilliamp threshold vertical-cavity laser diodes, Appl.
                               Phys. Lett. 57, 1605 (1990).
                         138.   Sugiyama K. and Saito, H., GaAsSb-AlGaAsSb double heterostructure laser, Jpn. J. Appl.
                               Phys. 11, 1057 (1972).
                         139.  Xie, Q., Kalburge, A., Chen, P., and Madhukar, A., Observation of lasing from vertically
                               self-organized InAs three-dimensional island quantum boxes on GaAs (001), IEEE Phot.
                               Technol. Lett. 8, 965 (1996).
                         140.  Feketa, D., Chan, K. I., Ballantyne, J. M., and  Eastman,  L.  F.,  Graded-index  separate-
                               confinement InGaAs/GaAs  strained-layer  quantum  well  laser  grown  by  metalorganic
                               chemical vapor deposition, Appl. Phys. Lett. 49, 1659 (1986).






                         ©2001 CRC Press LLC
   301   302   303   304   305   306   307   308   309   310   311