Page 307 - Handbook of Lasers
P. 307

141.  Chipaux, C. and Eymard, R., Study of the laser effect in GaSb alloys, Phys. Stat. Sol. 10,
                               165 (1965).
                         142.  Heinrichsdorff, F., Mao, M.-H., Kirstaedter, N., Krost, A., Bimberg, D., Kosogov, A. O., and
                               Werner, P., Room-temperture continuous-wave lasing from stacked InAs/GaAs quantum
                               dots grown by metalorganic chemical vapor deposition, Appl. Phys. Lett. 71, 22 (1997).
                         143.  Chang-Hasnain, C. J., Bhat, R., Zah, C. E., Koza, M. A., Favire, F., and Lee, T. P., Novel
                               AlGaInAs/AlInAs lasers emitting at 1 mm, Appl. Phys. Lett. 57, 2638 (1990).
                         144.  York, P. K., Berenik, K., Fernandez, G. E., and Coleman, J. J., InGaAs-GaAs strained-layer
                                                                       mm) by metalorganic chemical vapor
                               quantum well buried heterostructure lasers (l  >  1
                               deposition, Appl. Phys. Lett. 54, 499 (1989).
                         145.  Berkovskil, F. M., Goryunova, N. A., and Ordov, V. M., CdSnP  laser excited with an
                                                                                 2
                               electron beam, Sov. Phys. Semiconductor 2, 1027 (1969).
                         146.  Kamath, K., Bhattacharya, P., Sosnowski, T., Norris, T., and Phillips, J., Room-temperature
                               operation of In  Ga  As/GaAs self-organised quantum dot lasers,  Electron. Lett.  32,
                                           0.4  0.6
                               1374 (1996).
                         147.  Akimov, Yu. A., Burov, A. A., and Zagarinskii, E. A., Electron-beam-pumped AI Ga  Sb
                                                                                             x  1-x
                               semiconductor laser, Sov. J. Quantum Electron. 5, 37 (1975).
                         148.  Razeghi, M., Defour, M., Omnes, F., Maurel, Ph.,  Chazelas,  J.,  and  Brillouet,  F.,  First
                               GaInAsP-InP double-heterostructure laser emitting at 1.27  mm on a silicon  substrate,
                               Appl. Phys. Lett. 53, 725 (1988).
                         149.  Qiun, Y., Zhu, Z. H., Lo, Y. H. et al., Long wavelength (1.3  mm) vertical-cavity surface-
                               emitting lasers with a wafer-bonded mirror and an oxygen-implanted confinement region,
                               Appl. Phys. Lett. 71, 25 (1997).
                         150.  Wakao, K., Nakai, K., Sanada, T. et al., InGaAsP/InP planar buried heterostructure laser
                               with semi-insulating InP current blocking layer grown by MOCVD,  IEEE J. Quantum
                               Electron. 23, 943 (1987).
                         151.  Lidgard, A., Tnabun-Ek, T., Logan, R. A., Temkin, H., Wicht, K. W., and Olsson, N. A.,
                               External-cavity InGaAs/InP graded index multiquantum well laser with a 200 nm tuning
                               range, Appl. Phys. Lett. 56, 816 (1990).
                         152.  Temkin,  H.,  Alavi,  K.,  Wagner,  W.  R.,  Pearsall,  T.  P.,  and  Cho,  A.  Y.,  1.5–1.6-mm
                               Ga  In   As/Al  In   As  multiquantum  will  lasers  grown  by  molecular  beam
                                 0.47  0.53  0.48  0.52
                               epitaxy, Appl. Phys. Lett. 42, 845 (1983).
                         153.  Benoit-a-la Guillaume, C., and Debever, J.  M.,  Laser  effect  in  gallium  antimonide  by
                               electron bombardment, Compt. Rend. 259, 2200 (1964).
                         154.  Benoit-a-la Guillaume, C., and Laurant, J. M., Laser effect in InAs and GaSb by optical
                               excitation, Compt. Rend. 262, 275 (1966).
                         155.  Babic´, D. I., Dudley, J. J., Strubel, K., Mirin, R. P., Bowers, J. E., and Hu, E. L., Double-
                               fused 1.52-mm vertical-cavity lasers, Appl. Phys. Lett. 66, 1030 (1995).
                         156.  Kryukova, I. V., Karnaukhov, V. G.,  and  Paduchikh,  L.  I.,  Stimulated  radiation  from
                               diffused p-n junction in gallium antimonide, Sov. Phys. Sol. Stat. 7, 2757 (1966).
                         157.  Kurbatov, D. N., Dirochka, A. I., and Ogorodnik, A. D., Recombination radiation of In Se,
                                                                                                 2
                               Sov. Phys. Semiconductor 4, 1195 (1971).
                         158.  Alexander, F. B., Bird, V. R., and Carpenter, D. B., Spontaneous and stimulated infrared
                               emission from indium phosphide-arsenide diodes, Appl. Phys. Lett. 4, 13 (1964).
                                                                                 2
                         159.  Zah, C.E., Bhat, R., Cheung, K. W. et al., Low-threshold (< 92 A/cm ) 1.6 mm strained-layer
                               single quantum well laser diodes optically pumped by a 0.8  mm laser diode, Appl. Phys.
                               Lett. 57, 1608 (1990).
                         160.  Melngailis, I., Strauss, A. J., and Rediker, R. H., Semiconductor In Ga  As diode masers,
                                                                                 x  1-x
                               Proc. IEEE 51, 1154 (1963).
                         161.  Kano, H. and Sugiyama, K., 2.0 mm C.W. operation of GaInAsSb/GaSb D.H. lasers at 80 K,
                               Electron. Lett. 16, 146 (1980).






                         ©2001 CRC Press LLC
   302   303   304   305   306   307   308   309   310   311   312