Page 281 - Handbook of Materials Failure Analysis
P. 281
CHAPTER
A nonlocal damage-
mechanics-based 12
approach suitable
for failure assessment and
remaining life estimation
of critical industrial
components
Mahendra K. Samal
Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
CHAPTER OUTLINE
1 Introduction ..................................................................................................... 278
2 Nonlocal Rousselier’s Damage Model ................................................................ 280
3 Beremin’s Model for Cleavage Fracture .............................................................. 284
4 Types of Fracture Mechanics Specimens Analyzed in Upper Shelf and DBTT
Regime ............................................................................................................ 285
5 Material and Experiment ................................................................................... 286
6 Results and Discussion ..................................................................................... 291
6.1 Effect of Mesh Size on the Load Deformation and Fracture Resistance
Behavior of the 1T SEB Specimen .....................................................291
6.2 Effect of Crack Depth on Load-Deformation Response of 1T SEB
Specimens ......................................................................................293
6.3 Effect of Geometry, Specimen Size, and Loading Condition on the
Load-Deformation Response ..............................................................295
6.4 Effect of Symmetry Boundary Conditions on Crack Growth Simulation ..296
6.5 Effect of Crack Depth on the Probability of Cleavage Fracture in the
DBTT Regime ..................................................................................297
6.6 Extent of Stable Crack Growth (Before Cleavage Fracture) in the DBTT
Regime ...........................................................................................300
6.7 Effect of Specimen Geometry and Loading Condition on Probability
of Cleavage Fracture in the DBTT Regime ..........................................302
6.8 Effect of Specimen Thickness on Probability of Cleavage Fracture
in the DBTT Regime .........................................................................302
Handbook of Materials Failure Analysis With Case Studies from the Chemicals, Concrete, and Power Industries. 277
http://dx.doi.org/10.1016/B978-0-08-100116-5.00012-0
Copyright # 2016 Elsevier Ltd. All rights reserved.