Page 285 - Handbook of Materials Failure Analysis
P. 285

2 Nonlocal Rousselier’s Damage Model    281




                   Table 12.1 Summary of Different Models Used for Analysis of Ductile and
                   Cleavage Fracture
                              Applicability                               For Details,
                              (Ductile/                                   Refer
                   Type of    Cleavage                                    Section/
                   Model      Fracture)  Yield Criteria/Failure Probability  References

                   Rousselier’s  Ductile      q                            2,[7]
                                         ϕ ¼
                   damage     fracture      1 d
                   model                                  p
                                             + Dσ k d exp       R ε eq ¼ 0
                                                      ð 1 dÞσ k
                   Gurson-    Ductile             ! 2                      [8,9]
                                               q
                   Tvergaard-  fracture  ϕ ¼
                                             R ε eq
                   Needleman’s
                   model                                       !
                                                            p
                                                                        2
                                                                 1 q 3 f ¼ 0
                                             +2q 1 f cosh  1:5q 2
                                                           R ε eq
                   Beremin’s  Cleavage                 σ w    m            3,[20]
                   model      fracture   P f ¼ 1 exp       ,
                                                      σ u
                                             s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                n
                                               X    m V i
                                              m    i
                                         σ w ¼     σ I
                                                      V 0
                                               i¼1
                                            1  ð
                                     _  !           ! !  _  !   !
                                    dx ¼         Ψ y ; x fy dΩ y                (12.1)
                                             !
                                          Ψ x   Ω

                       !                                                       ! !
                  where y is the position vector of the infinitesimally small volume dΩ and Ψ y ; x
                  is the Gaussian weight function given by
                                                      0         1
                                                               2
                                                          !
                                                             !
                                                 1          x   y
                                        ! !           B         C
                                     Ψ y ; x ¼      exp         A               (12.2)
                                              8π 3=2 3     4l 2
                                                  l
                                                      @
                  The length parameter l in Equation 12.2 determines the size of the volume, which
                  effectively contributes to the nonlocal quantity and is related to the scale of the
                  microstructure. The above integral nonlocal kernel holds the property that the local

                                                         !
                  continuum is retrieved if l ! 0. By expanding fy in Taylor’s series and substitut-
                  ing in Equation 12.1, one can obtain the damage diffusion equation as
                                                       2 _
                                            _
                                               _
                                           d  f  C length r d ¼ 0               (12.3)
                  where C length is the characteristic length parameter of the material [17–19]. The yield
                  function ϕ of the Rousselier’s model [7] is modified by substituting the nonlocal
                  damage d in place of the local ductile void volume fraction f as [17] follows.
                                       q              p
                                  ϕ ¼    + Dσ k d exp       R ε eq ¼ 0          (12.4)
                                     1 d           ð 1 dÞσ k
   280   281   282   283   284   285   286   287   288   289   290