Page 199 - Handbook of Properties of Textile and Technical Fibres
P. 199
176 Handbook of Properties of Textile and Technical Fibres
Freddi G, Romano M, Massafra MR, Tsukada M: Silk fibroin/cellulose blend films: preparation,
structure, and physical properties, J Appl Polym Sci 56:1537e1545, 1995.
Freddi G, Mossotti R, Innocenti R: Degumming of silk fabric with several proteases,
J Biotechnol 106:101e112, 2003.
Garel A, Deleage G, Prudhomme J-C: Structure and organization of the Bombyx mori sericin 1
gene and of the sericins 1 deduced from the sequence of the ser 1BcDNA, Insect Biochem
Mol Biol 27:469e477, 1997.
Giesa T, Pugno NM, Wong JY, Kaplan DL, Buehler MJ: What’s inside the box? e Length-
scales that govern fracture processes of polymer fibers, Adv Mater 25:1275e1279, 2014.
Giesa T, Perry CC, Buehler MJ: Secondary structure transition and critical stress for a model of
spider silk assembly, Biomacromolecules 17:427e436, 2015.
Gillespie DB, Viney C, Yager P: Raman-spectroscopic analysis of the secondary structure of
spider silk fiber. In Kaplan D, Adams WW, Farmer B, et al., editors: Book series, ACS
symposium series vol. 544, pp 155e167.
Gosline JM, Guerette PA, Ortlepp CS, Savage KN: The mechanical design of spider silks: from
fibroin sequence to mechanical function, J Exp Biol 202:3295e3303, 1999.
Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage KN: Elastic proteins: biological
roles and mechanical properties, Philosophical Trans R Soc Lond B 357:121e132, 2002.
Gouadec G, Colomban P: Raman study of nano-materials: how spectra related to disorder,
particle size and mechanical properties, Prog Cryst Growth Charact Mater 53:1e56, 2007.
Gouadec G, Forgerit JP, Colomban Ph: Choice of the working conditions for Raman extens-
ometry of carbon and SiC fibers by 2D correlation, Compos Sci Technol 62:505e511,
2002.
Grenier A-M, Da Rocha M, Jalabert A, Royer C, Mauchamp B, Chavancy G: Artificial
parthenogenesis and control of voltinism to manage transgenic populations in Bombyx
mori, J Insect Physiol 50:751e760, 2004.
Grip S, Johansson J, Hedhammar M: Engineered disulfides improve mechanical properties of
recombinant spider silk, Protein Sci 18:1012e1022, 2009.
Gronau G, Qin Z, Buehler MJ: Effect of sodium chloride on the structure and stability of spider
silk’s N-terminal protein domain, Biomaterial Sci 1:276e284, 2013.
Gruger A, Novak A, Regis A, Colomban P: Infrared and Raman study of polyaniline. Part II:
influence of orthosubstituents on hydrogen bonding and UV/Vis-near IR electron charge
transfer, J Mol Struct 328:153e167, 1995.
Guinea GV, Elices M, Real JI, Gutiérrez S, Pérez-Rigueiro J: Reproductibility of the tensile
properties of spider (Argiope trifasciata) silk obtained by forced silking, J Exp Zool A 303:
37e44, 2005.
Guinier A: Théorie et Technique de la Radiocristallographie, Paris, 1956, Dunod, pp 615e623.
Ha S-W, Park YH, Hudson SM: Dissolution of Bombyx mori silk fibroin in the calcium nitrate
tetrahydrate-methanol system and aspects of wet spinning of fibroin solution, Bio-
macromolecules 4:488e496, 2003.
Ha S-W, Gracz HS, Tonelli AE, Hudson SM: Structural study of irregular amino acid sequences
in the heavy chain Bombyx mori silk fibroin, Biomacromolecules 6:2563e2569, 2005.
Hardy JG, Scheibel TR: Composite materials based on silk proteins, Prog Polym Sci 35:
1093e1115, 2010.
Harrington MJ, Wasko SS, Masic A, Fischer SD, Gupta HS, Fratzl P: Pseudoelastic behaviour of
a natural material is achieved via reversible changes in protein backbone conformation, JR
Soc Interf 9:2911e2922, 2012.
Hayashi CH, Shipley NH, Lewis RV: Hypotheses that correlate the sequence, structure, and
mechanical properties of spider silk proteins, Int J Biol Macromol 24:271e275, 1999.