Page 198 - Handbook of Properties of Textile and Technical Fibres
P. 198
Silk: fibers, films, and compositesdtypes, processing, structure, and mechanics 175
Colomban P, Tournié A, Dinh HM, Jauzein V: Origin of the variability of the mechanical
properties of silk fibres: 3, order and macromolecule orientation in Bombyx mori bave,
hand-stretched strings and Nephila madagascarensis spider fibres, J Raman Spectrosc 43:
1042e1048, 2012b.
Craig CL: Evolution of arthropod silks, Annu Rev Entomol 42:231e267, 1997.
Craven JP, Cripps R, Viney C: Evaluating the silk/epoxy interface by means of the Microbond
Test, Compos A Appl Sci Manuf 31:653e660, 2000.
Cunniff PM, Fossey SA, Auerbach MA, Song JW, Kaplan DL, Adam WW, Eby RK,
Mahoney D, Vezie DL: Mechanical and thermal properties of dragline silk from the spider
Nephila clavipes, Polym Adv Tech 5:401e410, 1994.
Dash R, Ghosh SK, Kaplan DL, Kundu SC: Purification and biochemical characterization of a
70 kDa sericin from tropical tasar silkworm, Antheraea mylitta, Comp Biochem Physiol B
147:129e134, 2007.
Demura M, Minami M, Asakura T, Cross TA: Structure of Bombyx mori silk fibroin based on
solid-state NMR orientational constraints and fiber diffraction unit cell parameters, JAm
Chem Soc 120:1300e1308, 1998.
Denny M: The physical properties of spider’s silk and their role in the design of orb-webs, Exp
Biol 65:483e506, 1976.
Dicko C, Knight D, Kenney JM, Vollrath F: Structural conformation of spidroin in solution: a
synchrotron radiation circular dichroism study, Biomacromolecules 5:758e767, 2004.
Dinh HM: Raman/IR study of the variability of proteic fibres: relationship between local
structure, treatments and (nano)mechanical properties of silk fibres and films, Ph.D.
dissertation, Université Pierre et Marie Curie (Paris 6), http://www.ladir.cnrs.fr/pages/
colomban/Manh-Thesis.pdf.
Dinh HM: Strain-induced structure change of silk fibres e 2D correlation study, 2017.
Submitted.
Dinh HM, El Baghli H, Colomban P: The mechanics of proteic single fibres: the silkworm fibres.
In Proc. Apctp-asean workshop on advanced materials science and nanotechnology
(ANSN2008 e 4th IWONN), Academic Press of Vietnam Academy of Science and
Technology, pp 528e535, 978-90-9023470.
dos Santos-Pinto JRA, Andrade Arcuri H, Priewalder H, Salles HC, Palma MS, Lubec G:
Structural model for the spider silk protein spidroin-1, J Proteome Res 14:3859e3870,
2015.
Drummy LF, Phillips DM, Stone MO, Farmer BL, Naik RR: Thermally induced a-helix to
b-sheet transition in regenerated silk fibers and films, Biomacromolecules 6:3328e3333,
2005.
Du N, Liu XY, Narayanan J, Li L, Lek Min Lim M, Li D: Design of superior spider silk: from
nanostructure to mechanical properties, Biophys J BioFAST, 2006:1e23, 2006.
Ene R, Papadopoulos P, Kremer F: Partial deuteration probing structural changes in super-
contracted spider silk, Polymer 51:4784e4789, 2010.
Fahnestock SR, Irwin SL: Synthetic spider dragline silk proteins and their production in
Escherichia coli, Appl Microbiol Biotechnol 47:23e32, 1997.
Fedi cR, Zurovec M, Sehnal F: Correlation between fibroin amino acid sequence and physical
silk properties, J Biol Chem 278:35255e35264, 2003.
Fleissner F, Bonn M, Parekh SH: Microscale spatial heterogeneity of protein structural transi-
tions in fibrin matrices, Sci Adv 2:e1501778, 2016.
Fornes RE, Work RW, Morosoff N: Molecular orientation of spider silks in the natural and
supercontracted states, J Polym Sci Part B Poly Phys 21:1163e1172, 1983.