Page 205 - Handbook of Properties of Textile and Technical Fibres
P. 205
182 Handbook of Properties of Textile and Technical Fibres
Takahashi Y, Gehoh M, Yuzuriha K: Structure refinement and diffuse streak scattering of silk
(Bombyx mori), Int J Biol Macromol 24:127e138, 1999.
Takasu Y, Yamada H, Tamura T, Sezutsu H, Mita K, Tsubouchi K: Identification and char-
acterization of a novel sericin gene expressed in the anterior middle silk gland of the
silkworm Bombyx mori, Insect Biochem Mol Biol 37:1234e1240, 2007.
Termonia Y: Molecular modeling of spider silk elasticity, Macromolecules 27:7378e7381,
1994.
Termonia Y: Nanoscale self-assembly of multiblock copolymer chains into rods, Bio-
macromolecules 5:2404e2407, 2004.
Vehoff T, Gli sovi c A, Schollmeyer H, Zippelius A, Salditt T: Mechanical properties of spider
dragline silk: humidity, hysteresis, and relaxation, Biophysical J 93:4425e4432, 2007.
Vepari C, Kaplan DL: Silk as a biomaterial, Prog Polym Sci 32:991e1007, 2007.
Vollrath F, Knight DP: Liquid crystal silk spinning in nature, Nature 410(6828):541e548, 2001.
Vollrath F, Porter D: Spider silk as archetypal protein eslatomer, Soft Matter 2:377e385, 2006.
Wang X, Wenk E, Matsumoto A, Meinel L, Li C, Kaplan DL: Silk microspheres for encap-
sulation and controlled release, J Control Release 117:360e370, 2007.
Wang SD, Zhang YZ, Wang HW, Yin GB, Dong ZH: Fabrication and properties of the elec-
trospun polylactide/silk fibroin-gelatin composite tubular scaffold, Biomacromolecules 10:
2240e2244, 2009.
Wang Y, Guan J, Hawkins N, Porter D, Shao Z: Understanding the variability of properties in
Antheraea pernyi silk fibres, Soft Matter 10:79e89, 2014.
Wilson D, Valluzzi R, Kaplan D: Conformational transitions in model silk peptides, Biophysical
J 78:2690e2701, 2000.
Wojciesjak M: La soie, “mod ele” de polym eres naturels fibreux : analyse vibrationnelle et
nano/micromécanique, de la finre au composite, Ph.D. dissertation, UPMC-Paris 6, www.
theses.fr/2014PA066506.pdf.
Wojcieszak M, Percot A, Noinville S, Gouadec G, Colomban P: Origin of the variability of the
mechanical properties of silk fibres: 4. order/cristallinity along silkworm and spider fibres,
J Raman Spectrosc 45(10):895e902, 2014. http://dx.doi.org/10.1002/jrs.4579.
Wojcieszak M, Percot A, Tiennot M, Marcellan A, Colomban P: Silk fibre reinforced silk matrix
composites, Comptes-Rendus des Journées Nationales des Composites JNC 18, Nantes,
https://www.researchgate.net/publication/262182503_Composites_fibre_de_soie_
matrice_de_soie_regeneree_Silk_fibre_reinforced_silk_matrix_composites.
Wojcieszak M, Percot A, Colomban P: Regenerated silk matrix composites reinforced by silk
fibres (Submitted), 2017.
Work RW: Mechanisms of major ampullate silk fiber formation by orb-web spinning spiders,
Trans Am Microsc Soc 90:170e189, 1977.
Work RW, Morosoff N: A physicochemical study of the supercontraction of spider major
ampullate silk fiber, Text Res J 52:349e356, 1982.
Yamada H, Nakao H, Takasu Y, Tsubouchi K: Preparation of undegraded native molecular
fibroin solution from silkworm cocoons, Mater Sci Eng C 14:41e46, 2001.
Yang Y, Ding F, Wu J, Hu W, Liu W, Liu J, Gu X: Development and evaluation of silk fibroin-
based nerve grafts used for peripheral nerve regeneration, Biomaterials 28:5526e5535,
2007.
Yin J, Chen E, Porter D, Shao Z: Enhancing the toughness of regenerated silk fibroin film
through uniaxial extension, Biomacromolecules 11:2890e2895, 2010.
Yuan Q, Yao J, Chen X, Huang L, Shao Z: The preparation of high performance silk fiber/fibroin
composite, Polymer 51:4843e4849, 2010.