Page 310 - Hardware Implementation of Finite-Field Arithmetic
P. 310

290     Cha pte r  T e n



          10.3 Group Law
               Given an elliptic curve E(L), an addition operation can be defined so
               that E(L) is an abelian group ([HMV04]). The addition definition
               depends on the type of curve. In all cases the point at infinity ∞ is the
               neutral element (or identity). Let P and Q be elements of E(L).
                                                   3
                          m
                                                2
               1. If L = GF(p ) where p > 3 (equation y = x + ax + b) then
                                   P + ∞ = ∞ + P = P               (10.10)

                                   (x, y) + (x, − y) =∞            (10.11)

               if P = (x , y ), Q = (x , y ), P ≠ Q and P ≠− Q, then P + Q = (x , y )
                      1  1       2  2                                3  3
               where
                                   2
                x = [(y − y )/(x − x )] − x − x , y = [(y − y )/(x − x )](x − x ) − y
                 3    2  1   2   1    1   2  3   2  1   2   1  1   3   1
                                                                     (10.12)
               if P = (x , y ) and P ≠ − P, that is, y ≠ 0, then P + P = (x , y ) where
                     1  1                  1                3  3
                                  2
                          2
                                               2
                   x = [(3x + a)/2y ] − 2x , y = [(3x + a)/2y ](x − x ) − y    (10.13)
                    3    1       1     1  3    1       1  1  3   1
               2.  If L = GF(2 ), nonsupersingular case (equation y + xy = x + ax + b)
                          m
                                                                     2
                                                                3
                                                         2
                 then
                                   P + ∞ = ∞ + P = P               (10.14)
                                  (x, y) + (x, x + y) =∞           (10.15)
               if P = (x , y ), Q = (x , y ), P ≠ Q and P ≠− Q, then P + Q = (x , y )
                      1  1       2  2                                3  3
               where
                            2
                         x =λ + λ + x + x  +  a, y =λ(x  +  x ) + x + y ,
                         3         1  2     3    1   3    3  1
                        λ= (y + y )/(x + x )                       (10.16)
                             1   2   1  2
               if P = (x , y ) and P ≠− P, that is, x ≠ 0, then P + P = (x , y ) where
                     1  1                  1               3  3
                                       2
                                              2
                   x =λ + λ + a = x + b/x , y = x + λx + x , λ= x + y /x   (10.17)
                        2
                                  2
                    3            1     1  3  1    3   3    1   1  1
                                                                3
                           m
                                                        2
               3.  If L = GF(2 ), supersingular case (equation y + cy = x + ax + b)
                 then
                                   P + ∞ = ∞ + P = P               (10.18)
                                  (x, y) + (x, y + c ) =∞           (10.19)
   305   306   307   308   309   310   311   312   313   314   315