Page 35 - Hardware Implementation of Finite-Field Arithmetic
P. 35

18    Cha pte r  O n e


                                                                        s
                                                        s
                                                                s
                   5.  Given g (x) and h(x) in F , then ( ( )gx +  h ( )) = ( ( )) +  ( ( )) ,
                                                                p
                                                        p
                                                                       p
                                                     x
                                                            gx
                                                                     x
                                                                   h
                                         q
                      for all s ≥ 0.
                            n
                                                      2
                  6.  If r = (p − 1)/(p − 1), that is r = 1 + p + p  +  . . .  + p n − 1 , and g (x)
                      is an element of F , then ( g (x))  is an element of F .
                                               r
                                    q                          p
               Example 1.11
                                                   4
                     p = 2, n = 4, f  (x) = 1 + x + x  so that x  ≡ 1 + x mod f  (x);
                                           4
               α= x is a generator of the cyclic group F *:
                                                16
                       α  = x
                        1
                        2
                       α  = x 2
                       α  = x 3
                        3
                            4
                        4
                       α  = x  ≡ 1 + x
                        5
                       α  = x(1 + x) = x + x 2
                                    2
                        6
                                2
                       α  = x(x + x ) = x  + x 3
                             2
                                 3
                                     3
                                        4
                        7
                       α  = x(x  + x ) = x  + x  ≡ 1 + x + x 3
                                     2
                       α  = (α )  = (1 + x)  = 1 + x 2
                        8
                             4 2
                                2
                        9
                       α  = x(1 + x ) = x + x 3
                                        4
                       α  = x(x + x ) = x  + x  ≡ 1 + x + x 2
                                 3
                                     2
                        10
                       α  = x(1 + x + x ) = x + x + x 3
                                    2
                                           2
                        11
                                        2
                                                         2
                                            3
                                               4
                        12
                                 2
                                    3
                       α  = x(x + x + x ) = x  + x + x ≡ 1 + x + x  + x 3
                                                     4
                                                            2
                                                  3
                                       3
                                              2
                       α  = x(1 + x + x  + x ) = x + x + x  + x  ≡ 1 + x  + x 3
                                    2
                        13
                                           3
                                 2
                        14
                                               4
                       α  = x(1 + x  + x ) = x + x  + x  ≡ 1 + x 3
                                    3
                       α  = x(1 + x ) = x + x  ≡ 1
                                        4
                        15
                                 3
                  Given a polynomial g (x) = g  + g x + g x  + g x , then
                                                   2
                                                        3
                                          0  1    2    3
                                                  2
                ( g (x))  = g  + g x  + g x  + g x  ≡ g  + g x  + g (1 + x) + g x (1 + x)
                                                                 2
                                    4
                      2
                               2
                                         6
                          0  1     2    3    0   1    2        3
                                             2
                                                  3
                       = ( g  + g ) + g x + ( g  + g )x  + g x
                           0  2   2     1  3     3
               if ( g (x))  = g (x), then
                      2
                                g  + g  = g , g  = g , g  + g  = g
                                 0  2   0  2  1  1  3  2
               thus
                                      g  = g  = g  = 0
                                       1  2   3
               and g (x) = g , that is, an element of F  (Property 1.8(3)).
                         0                   p
               1.3.2 Field Extensions
               Definition 1.22  Let E be a subfield of the field F and M any subset of
               F. Then the field E(M) is defined as the intersection of all subfields of
               F containing both E and M and is called the extension field o f E obtained
                                                               θ
               by adjoining the elements in M. For a finite subset M = {, ... ,θ  },
                                                                1      n
   30   31   32   33   34   35   36   37   38   39   40