Page 56 - Hardware Implementation of Finite-Field Arithmetic
P. 56

mod  m  Reduction    39


                  Then any natural x belonging to the interval
                                    l s−1.  l     l s−1 + ...  1 l + +  0 l  n
                                            1.
                         0 ≤ x < W  = 2  ... . 2 2 =  2   =  2
                                              l 0
                                s
               can be represented under the form
                                                                      l
                x = X  W   + X  W    +  . . .  + X W  + X W   where 0 ≤ X  <  2 i ,
                    s − 1  s − 1  s − 2  s − 2  1  1  0  0         i
                                   ∀i = 0, 1, . . . , s − 1         (2.33)
                  The following values are previously computed:

                                      b  = W  = 1
                                       0   0
                                      b  = W  mod m
                                       1   1
                                      b  = W  mod m
                                       2   2
                                           . . .
                                    b   = W   mod m
                                     s − 1  s − 1
                  Then
                      x ≡ X  b   + X  b   +  . . .  + X b  + X b  mod m  (2.34)
                           s − 1 s − 1  s − 2 s − 2  1 1  0 0
               and the problem is reduced to the computation of r mod m where
                          r = X  b   + X  b   +  . . .  + X b  + X b  (2.35)
                              s − 1 s − 1  s − 2 s − 2  1 1  0 0
                  Assume that 2 k − 1  ≤ m < 2  and that l  ≥ k. Then
                                       k
                                                0
                                                l
                                                    k
                                W    >  . . .  > W  = 2 0 ≥ 2  > m
                                 s − 1      1
               so that b  = W mod m < W, ∀i = 1, 2, . . . , s − 1, and r is smaller than x
                      i   i          i
                                                               l
               except if X  = X  =  . . .  = X   = 0 in which case r = X  <  2 0 . Thus, an
                        1   2        s − 1                 0
               iterative use of the preceding method eventually generates a natural
                                         l
               z ≡ x mod m and smaller than  2 0 . A final correction step generates z =
               x mod m. In particular, if l  = k, so that z < 2 , then x mod m is either z
                                                   k
                                     0
               or z – m.
                  As a particular case assume that n = sk and define l  = l  = l  =  . . .  =
                                                            0  1  2
               l   = k. Then
               s − 1
                W  = 1, W  = 2 , W  = 2  , . . . , W   = 2 (s − 1)k   and   W  = 2  = 2 n
                                  2k
                            k
                                                                   sk
                  0     1      2          s − 1                 s
                  The corresponding representation [Eq. (2.33)] of x is
                x = X   · 2 (s − 1)k  + X   · 2 (s − 2)k  +  . . .  + X · 2  + X   where 0 ≤ X  < 2 ,
                                                                       k
                                                 k
                    s − 1      s − 2           1     0              i
                                    ∀i = 0, 1, . . . , s − 1
               and the previously computed values are
   51   52   53   54   55   56   57   58   59   60   61