Page 440 - High Power Laser Handbook
P. 440

408     So l i d - S t at e   La s e r s                                                                          The National Ignition Facility Laser    409


                      28.  Spaeth, M. L., Manes, K. R., Widmayer, C. C., Williams, W. H., Whitman,
                          P. K., Henesian, M. A., Stowers, I. F., and Honig, J., “National Ignition Facility
                          Wavefront Requirements and Optical Architecture,” Opt. Eng., 43: 2954–2965,
                          2004.
                      29.  Bonanno, R. E., “Assembling and Installing Line-Replaceable Units for the
                          National Ignition Facility,” Opt. Eng., 43: 2866–2872, 2004.
                      30.  Zacharias, R. A., Beer, N. R., Bliss, E. S., Burkhart, S. C., Cohen, S. J., Sutton,
                          S. B., Van Atta, R. L., et al., “Alignment and Wavefront Control Systems of the
                          National Ignition Facility,” Opt. Eng., 43: 2873–2884, 2004.
                      31.  Shaw, M., Williams, W., House, R., and Haynam, C., “Laser Performance
                          Operations Model,” Opt. Eng., 43: 2884–2895, 2004.
                      32.  Moses,  E.  I.,  and  Wuest,  C.  R.,  “The  National  Ignition  Facility:  Laser
                          Performance and First Experiments,” Fusion Sci. Tech., 47(3): 314–322, 2005.
                      33.  Hunt, J. T., Manes, K. R., Murray, J. R., Renard, P. A., Sawicki, R., Trenholme,
                          J. B., and Williams, W., “Laser Design Basis for the National Ignition Facility,”
                          Fusion Tech., 26: 767–771, 1994.
                      34.  Wisoff, P. J., Bowers, M. W., Erbert, G. V., Browning, D. F., and Jedlovec, D. R.,
                          “NIF Injection Laser System,” Proc. SPIE, 5341: 146–155, 2004.
                      35.  Van Wonterghem, B. M., Murray, J. R., Campbell, J. H., Speck, D. R., Barker,
                          C. E., Smith, I. C., Browning, D. F., and Behrendt, W. C., “Performance of
                          a  Prototype  for  a  Large-Aperture  Multipass  Nd:glass  Laser  for  Inertial
                          Confinement Fusion,” Appl. Opt., 36:4932–4953, 1997.
                      36.  Lindl, J. D., Inertial Confinement Fusion, New York: Springer, 1998, “Development
                          of the Indirect-Drive Approach to Inertial Confinement Fusion and the Target
                          Physics Basis for Ignition and Gain,” Phys. Plasmas, 2: 3933–4024, 1995.
                      37.  Lindl, J. D., Amendt, P., Berger, R. L., Glendenning, S. G., Glenzer, S. H., Haan,
                          S. W., Kaufmann, R. L., et al., “The Physics Basis for Ignition Using Indirect-Drive
                          Targets on the National Ignition Facility,” Phys. Plasmas, 11: 339–491, 2004.
                      38.  Hinkel,  D.  E.,  Haan,  S.  W.,  Langdon,  A.  B.,  Dittrich,  T.  R.,  Still,  C.  H.,
                          and  Marinak,  M.  M.,  “National  Ignition  Facility  Targets  Driven  at  High
                          Radiation Temperature: Ignition, Hydrodynamic Stability, and Laser-Plasma
                          Interactions,” Phys. Plasmas, 11: 1128–1144, 2004.
                      39.  Haan, S. W., Herrmann, M. C., Amendt, P. A., Callahan, D. A., Dittrich, T. R.,
                          Edwards, M. J., Jones, O. S., et al., “Update on Specifications for NIF Ignition Targets,
                          and Their Roll Up into an Error Budget,” Fusion Sci. Tech., 49: 553–557, 2006.
                      40.  Manes, K. R., and Simmons, W. W., “Statistical Optics Applied to High-Power
                          Glass Lasers,” J. Opt. Soc. Am. A, 2: 528–538, 1984.
                      41.  Murray, J. R., Smith, J. R., Ehrlich, R. B., Kyrazis, D. T., Thompson, C. W.,
                          and Wilcox, R. B., “Observation and Suppression of Transverse Stimulated
                          Brillouin Scattering in Large Optics,” J. Opt. Soc. Am. B, 6: 2402–2411, 1989.
                      42.  Craxton, R., “High-Efficiency Tripling Schemes for High-Power Nd:glass
                          Lasers,” IEEE J. Quantum Electron., QE-17: 1771–1782, 1989.
                      43.  Eimerl, D., Auerbach, J. M., and Milonni, P. W., “Paraxial Wave Theory of
                          Second and Third Harmonic Generation in Uniaxial Crystals,” J. Mod. Opt.,
                          42(5): 1037–1067, 1995.
                      44.  Williams, W. H., Auerbach, J. M., Henesian, M. A., Jancaitis, K. S., Manes,
                          K. R., Mehta, N. C., Orth, C. D., et al., “Optical Propagation Modeling for the
                          National Ignition Facility,” Proc. SPIE, 5341: 277-78, 2004.
                      45.   Auerbach, J. M., Wegner, P. J., Couture, S. A., Eimerl, D., Hibbard, R. L., Milam,
                          D., Norton, M. A., et al., “Modeling of Frequency Doubling and Tripling with
                          Measured  Crystal  Spatial  Refractive-Index  Nonuniformities,”  Appl.  Opt.,
                          40(9): March 2001.
                      46.  Hardin, R. H., and Tappert, F. D., “Application of the Split-Step Fourier
                          Method to the Numerical Solution of Nonlinear and Variable Coefficient
                          Wave Equations,” SIAM Rev., 15: 423, 1973; Cooley, P. M., and Tukey, J. W.,
                          “An Algorithm for the Machine Computation of Complex Fourier Series,”
                          Mathematics of Computation, 19: 297, 1965.
                      47.  Munro, D. H., Dixit, S. N., Langdon, A. B., and Murray, J. R., “Polarization
                          Smoothing in a Convergent Beam,” Appl. Opt., 43: 6639–6647, 2004.
   435   436   437   438   439   440   441   442   443   444   445