Page 192 - High Temperature Solid Oxide Fuel Cells Fundamentals, Design and Applications
P. 192

Anodes  369

           much thicker anode layers are used in order to provide sufficient conductivity to
           transport electrons out to the interconnect.
             Operation of  anodes on fuels other than hydrogen is commercially necessary,
           and  challenging  because  of  carbon  deposition.  In  general,  pre-reforming  of
           hydrocarbons is carried out before the fuel contacts the anode. Direct internal
           reforming is possible with nickel cermet anodes, but carbon deposition can be a
           problem in long-term  operation. Other possible anode metals, such as copper,
           can prevent carbon formation but their properties are not entirely satisfactory.
           One strand of  current research is towards stable direct oxidation anodes. with
           modified cermets incorporating copper and ceramics like ceria; a further option
           lies  in  the  identification  of  mixed  conducting  ceramics  with  sufficient
           electrocataIytic  activity to function  alone without  any metal as anodes. The
           ultimate challenge is to produce anodes which can directly oxidise hydrocarbons.
           Indications are that this is possible and represents ongoing anode development.



           References
                 H.  S.  Spacil, US  Patent  3,558,360; filed  October  30,  1964, modified
                 November 2,1967, grantedMarch 31,1970.
                 T. Ogawa, T. Ioroi, Y. Uchimoto, Z.  Ogumi and Z.-I. Talrehara, in Solid
                 Oxide Fuel Cels III, The Electrochemical Society Proceedings, Pennington,
                 NJ, PV 93-4,1993,~. 479.
                 E.Baur andH. Preis, Z. Elektrochem., 43 (1937) 727.
                 H.-H. Mobius, J. Solid State Electrochem., 1 (1 99 7) 2; this work, Chapter 2.
                 S.  C.  Singhal, in Solid  Oxide Fuel  Cels 111, The Electrochemical Society
                 Proceedings, Pennington, NJ, PV 93-4,1993, p. 665.
                 J.-H. Lee, H. Moon, H.-W. Lee, J. Kim, J.-D. Kim andK.-H. Yoon. Solid State
                 Ionics, 148 (2002) 15.
                 S. Primdahl, B. F.  Scarensen and M.  Mogensen, J.  Am. Cerarn. Soc.,  83
                 (2000) 489.
                 D. Skarmoutsos, F. Teitz and P. Niikolopoulos, Fuel Cells, 1 (2001) 243.
                 T. Wagner,  R. Kirchheim andM. Ruhle. Actallletall. Mater,, 40 (1992) S85.
                 A. RinguedC, J. A. Labrincha and J. R. Frade. Solid State Ionics, 141-142
                 (2001) 549.
                 H. Itoh, Y. Heie, T. Yamamoto, M. Mori and T. Watanabe, in Solid  Oxide
                 Fuel Cells VU, eds. H. Yokokawa and S. C.  Singhal, The Electrochemical
                 Society Proceedings, Pennington, NJ, PV2001-16,2001, p. 750.
                 P.  Holtappels,  Julich  Research  Centre  Report  3414,  1997/Thesis,
                 University  of Bonn.
                 R. N. Basu, G. Blass, H. P. Buchlrremer, D. Stover, F. Tietz, E. Wessel and
                 I.  C. Vinke, in  Solid  Oxide  Fuel  Cells  VII, eds. H. Yokokawa and  S.  C.
                 Singhal,  The  Electrochemical  Society  Proceedings,  Pennington,  NJ,
                 Pv2001-16,2001,  p, 995.
                 Research Centre Julich website http://www.sofc.de (2002).
                 P. van Heuveln, Thesis, University of Twente, Netherlands, 199 7, p. 167.
   187   188   189   190   191   192   193   194   195   196   197