Page 123 - How To Solve Word Problems In Calculus
P. 123

2
                                                40 ±   (−40) − 4(1)(200)             a = 1
                                            x =
                                                           2                          b =−40
                                                     √                                c = 200
                                                40 ±   800
                                              =
                                                     2
                                                       √
                                              = 20 ± 10 2
                                                       √
                                   The value x = 20 + 10 2 lies outside the interval [0, 10]. Since the
                                   triangle’s area is 0 at the endpoints of the interval, (x = 0 and
                                                      √
                                   x = 10), x = 20 − 10 2 must correspond to the absolute
                                   maximum area.
                                        The corresponding value of y is computed from
                                                         200 − 20x
                                                     y =
                                                          20 − x
                                                                        √
                                                         200 − 20(20 − 10 2)
                                                      =               √
                                                          20 − (20 − 10 2)
                                                            √
                                                         200 2 − 200
                                                      =       √
                                                            10 2
                                                           √        √
                                                         20 2 − 20    2
                                                      =     √      · √
                                                              2       2
                                                               √
                                                         40 − 20 2
                                                      =
                                                             2
                                                               √
                                                      = 20 − 10 2
                                   Since y = x, the triangle is an isosceles right triangle. The
                                   hypotenuse
                                                   √            √ √        √
                                              z = x 2 = (20 − 10 2) 2 = 20 2 − 20

                                4. Let x be the side of the square and r the radius of the circle.
                                                            100"
                                             4x                 100 − 4x

                                                   x


                                                                           r
                                           x               x



                                                   x
                               110
   118   119   120   121   122   123   124   125   126   127   128