Page 129 - How To Solve Word Problems In Calculus
P. 129

relative maximum. Since it is the only relative extremum on (0, ∞),
                                   it gives the absolute maximum area.
                                8.







                                                                   y
                                                  x
                                                       x

                                         2
                                   V = x y. The postal restrictions say that 4x + y cannot exceed
                                   108 inches. For maximum volume we take 4x + y = 108.
                                   Equivalently, y = 108 − 4x and 0 ≤ x ≤ 27. (If x > 27, y < 0.)
                                                               2
                                                       V (x) = x (108 − 4x)
                                                                  2
                                                            = 108x − 4x  3
                                                       V (x) = 216x − 12x 2

                                                          0 = 216x − 12x 2
                                                          0 = 12x(18 − x)

                                   The critical values are x = 0 and x = 18. Since the endpoints of the
                                   interval, x = 0 and x = 27, both yield a volume of 0, the maximum
                                   volume occurs when x = 18 and its value is

                                                        2
                                       V max = V (18) = 18 (108 − 4 · 18) = 324 · 36 = 11,664 in 3
                                9.

                                       E

                                                              13
                                      5                           C

                                                                y
                                                    x                  12 − x
                                                                                     A
                                       D                         B
                                                             12


                               116
   124   125   126   127   128   129   130   131   132   133   134