Page 70 - Human Inspired Dexterity in Robotic Manipulation
P. 70

66    Human Inspired Dexterity in Robotic Manipulation


                                   1  2     T
                               H ¼ u ðtÞ + λ ðAx + buÞ,               (5.14)
                                   2
                                           _
          where λ is the costate vector. From λ ¼ ∂H=∂x one obtains the costate
                   _
                                                     T
                          T
          dynamics λ ¼ A λ, and establishes λ(t) ¼ e  A t λ(0), where the vector
          λ(0) is to be determined from the boundary conditions. Next, from ∂H/∂
          u ¼ 0 one defines the structure of the optimal control
                                     T
                                               T  A t
                            uðtÞ¼ λ ðtÞb ¼ b e     T  λð0Þ:           (5.15)
          Upon substituting Eq. (5.15) into Eq. (5.10), one defines
                                         ð T
                                                  T  A τ
                            At
                     xðTÞ¼ e xð0Þ e  AT     e  Aτ bb e  T  dτ λð0Þ,   (5.16)
                                          0
          and, therefore,
                                             1

                         ð T
                                  T  A τ
                 λð0Þ¼      e  Aτ bb e  T  dτ  ð xð0Þ e  AT xðTÞÞ:    (5.17)
                          0
          The optimal trajectory is thus determined as

                                   ð t
                                            T  A τ
                        At
                 xðtÞ¼e xð0Þ e  At    e  Aτ bb e  T  dτ
                                     0
                                                                      (5.18)
                         ð T                 1
                                      T
                             Aτ  T  A τ               AT
                           e   bb e     dτ    xð0Þ e     xðTÞ :
                          0
             To proceed further, one needs to define the structure of the matrix expo-
                 At
          nential e . Note that the matrix A has the upper triangular block form, and
          so does its matrix exponential:

                                A o A oh    At   E o E oh
                           A ¼           , e ¼           ,            (5.19)
                                     A h             E h
                                O                O
          where O is the 3   4 zero matrix, and the block components are defined as
                                       e
          E o ¼ e A o t , E h ¼ e A h t  , and E oh ¼  Ð  t A o ðt sÞ A oh e A h s  ds [18]. The specific calcu-
                                      0
          lations yield
                                    sinω 1 t
                       2                                     3
                         cosω 1 t               0        0
                                      ω 1
                       6                                     7
                       6  ω 1 sinω 1 t cosω 1 t  0       0   7
                 E o ¼  6                                    7 ,      (5.20)
                       6                               sinω 2 t 7
                         0            0      cosω 2 t
                       4                                     5
                                                        ω 2
                         0            0     ω 2 sinω 2 t cosω 2 t
   65   66   67   68   69   70   71   72   73   74   75