Page 71 - Human Inspired Dexterity in Robotic Manipulation
P. 71

Modeling and Human Performance in Manipulating Parallel Flexible Objects  67


                                          2       2  3
                                            1 tt =2
                                     E h ¼ 01     t  5 ,                 (5.21)
                                          4
                                            00    1
              and
                                                  2 2
                       2                                           3
                                    ω 1 t   sinω 1 t ω t  2ð1  cosω 1 tÞ
                                                  1
                         1  cosω 1 t
                       6                                2ω 2       7
                                        ω 1               1
                       6                                           7
                                                    ω 1 t   sinω 1 t
                       6                                           7
                       6 ω 1 sinω 1 t  1  cosω 1 t                 7
                       6                                           7
                                                        ω 1
                                                  2 2              7:    (5.22)
                       6                                           7
                  E oh ¼ 6          ω 2 t   sinω 2 t ω t  2ð1  cosω 2 tÞ
                                                  2
                       6 1  cosω 2 t                               7
                       6                                2ω 2       7
                                        ω 2
                       6                                  2        7
                       6                            ω 2 t   sinω 2 t  7
                       4 ω 2 sinω 2 t  1  cosω 2 t                 5
                                                        ω 2
                                                                 At
                 Having defined the structure of the matrix exponential e , one is ready
              to compute the optimal trajectory by Eq. (5.18). It is established that the
              optimal hand trajectory is composed of a fifth-order polynomial (as in the
              classic-jerk model) and two additional trigonometric terms:
                                                                !
                                    5        2
                                   X    k  X
                         x h ðtÞ¼ L   α k t +  β sinω k t + γ cosω k t ,  (5.23)
                                                k        k
                                   k¼0      k¼1
              where the constant coefficients α k , β k , γ k are functions of ω 1 , ω 2 , and T:
                                c 2  c 4               c 1  c 3
                         α 0 ¼         ,          α 1 ¼  +    ,
                               ω 4 1  ω 4              ω 4 1  ω 4 2
                                     2
                             1   c 2  c 4          1      c 1  c 3
                         α 2 ¼     +     ,    α 3 ¼   c 7         ,
                             2 ω  2 1  ω 2 2       6     ω 2 1  ω 2 2
                                1                   1
                         α 4 ¼    ð c 2 + c 4 + c 6 Þ, α 5 ¼  ð c 1 + c 3 + c 5 Þ,
                               24                  120
                                   5
                                                            4
                         β ¼ c 1 =ω ,              γ ¼ c 2 =ω ,
                                                    1
                          1
                                                            1
                                   1
                                   5
                                                            4
                         β ¼ c 3 =ω ,              γ ¼ c 4 =ω ,
                                                    2
                          2
                                   2
                                                            1
              and the components of the vector c are defined by solving the following sys-
              tem of linear equations

                                 ð T
                                          T  A τ
                             e AT   e  Aτ bb e  T  dτ c ¼ xðTÞ=L:        (5.24)
                                   0
                 It can be shown that the solution (5.23) possesses the property x h (t) ¼
              x h (T)   x h (T   t) and, therefore, all even derivatives of x h (t) are antisym-
              metric and odd derivatives are symmetric with respect to the middle point
   66   67   68   69   70   71   72   73   74   75   76