Page 76 - Human Inspired Dexterity in Robotic Manipulation
P. 76

72    Human Inspired Dexterity in Robotic Manipulation


                                     F
                        ^ x o ðtÞ¼        2  ð 1 bcosðΩt + βÞÞ,       (5.48)
                                ðm h + m o ÞΩ
          where

                               s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                               2 2
                                 fω  ð1+ μÞΩ g +4n Ω     2
                                    2
                                                      2
                           a ¼                           ,            (5.49)
                                            2 2
                                     ðω  Ω Þ +4n Ω   2
                                                   2
                                       2
                                   s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                        ω +4n Ω   2
                                               2
                                          4
                              b ¼                     ,               (5.50)
                                            2 2
                                     ðω  Ω Þ +4n Ω   2
                                                   2
                                       2
                                           2nμΩ 3
                       tanα ¼                                 ,       (5.51)
                                     2
                                                    2
                              ðω  Ω Þfω  ð1+ μÞΩ g +4n Ω     2
                                2
                                                          2
                                         2
                                             2nΩ 3
                            tanβ ¼                      ,             (5.52)
                                     ω ðω  Ω Þ +4n Ω   2
                                               2
                                          2
                                                     2
                                       2
          and μ ¼ m o /m h .
             By measuring the differences of the peak amplitudes for the hand and/or
          the object, Δx h , Δx o , one can estimate the hand mass from the following
          nonlinear (with respect to m h ) relationships:
                                2Faðm h Þ          2Fbðm h Þ
                        Δx h ¼           , Δx o ¼           :         (5.53)
                              ðm h + m o ÞΩ 2    ðm h + m o ÞΩ 2
                                                           2
                                                      2
          Note that for a relatively large natural frequency ω ≫ Ω and a sufficiently
          small damping factor n, we have a   1, b   1, and the estimation equations
          become linear and, therefore, easier to use. Either of them can be used for
          the estimation of the hand mass m h . Practically, however, it is more prefer-
          able to deal with the second one as the measurement of Δx o is less noisy
          because Eq. (5.42) acts as a second-order low-pass filter.
          5.5 EXPERIMENTAL RESULTS
          To check the velocity profiles of reaching movements with multimass flex-
          ible objects, we conducted an experiment. In the experimental setup, shown
          in Fig. 5.3, a haptic device (PHANToM Premium 1.5 HF, maximum exer-
          table force 37.5 N) is connected to the PC (Dell Optiplex 9020SFF, Intel
          Core i7-4770, 3.4 GHz) through a parallel port card (LF811KB PCI-E).
             Four naı ¨ve right-handed male subjects participated in the experiments.
          The subjects were instructed to move a two-mass virtual flexible object (m 1
   71   72   73   74   75   76   77   78   79   80   81