Page 117 - Hybrid Enhanced Oil Recovery Using Smart Waterflooding
P. 117
CHAPTER 4 Hybrid Chemical EOR Using Low-Salinity and Smart Waterflood 109
Khanamiri, H. H., Torsæter, O., & Stensen, J.Å. (2015). media. SPE Journal, 16(01), 35e42. https://doi.org/
Experimental study of low salinity and optimal salinity sur- 10.2118/129200-PA.
factant injection. In Paper presented at the EUROPEC 2015, Shaddel, S., & Tabatabae-Nejad, S. A. (2015). Alkali/surfactant
Madrid, Spain, 1e4 June. https://doi.org/10.2118/ improved low-salinity waterflooding. Transport in Porous
174367-MS. Media, 106(3), 621e642. https://doi.org/10.1007/
Khorsandi, S., Qiao, C., & Johns, R. T. (2017). Displacement ef- s11242-014-0417-1.
ficiency for low-salinity polymer flooding including wetta- Shaker Shiran, B., & Skauge, A. (2013). Enhanced oil recovery
bility alteration. SPE Journal, 22(02), 417e430. https:// (EOR) by combined low salinity water/polymer flooding.
doi.org/10.2118/179695-PA. Energy and Fuels, 27(3), 1223e1235. https://doi.org/
Kim, D. H., Lee, S., Ahn, C. H., Huh, C., & Pope, G. A. (2010). 10.1021/ef301538e.
Development of a viscoelastic property database for EOR Sheng, J. (2011). Modern chemical enhanced oil recovery: Theory
polymers. In Paper presented at the SPE improved oil recovery and practice. Amsterdam; Boston, MA: Gulf Professional
symposium, Tulsa, Oklahoma, USA, 24e28 April. https:// Pub.
doi.org/10.2118/129971-MS. Shiran, B. S., & Skauge, A. (2014). Similarities and differences
Kraemer, E. O. (1938). Molecular weights of celluloses and cel- of low salinity polymer and low salinity LPS (linked poly-
lulose derivates. Industrial & Engineering Chemistry, 30(10), mer solutions) for enhanced oil recovery. Journal of Disper-
1200e1203. https://doi.org/10.1021/ie50346a023. sion Science and Technology, 35(12), 1656e1664. https://
Lake, L. W. (1989). Enhanced oil recovery. Englewood Cliffs, N.J: doi.org/10.1080/01932691.2013.879532.
Prentice Hall. Sorbie, K. S. (1991). Polymer-improved oil recovery. Glasgow,
Lee, S., Kim, D. H., Huh, C., & Pope, G. A. (2009). Develop- Boca Raton, FLA: Blackie: CRC Press.
ment of a comprehensive rheological property database Suleimanov, B. A., Latifov, Y. A., Veliyev, E. F., & Frampton, H.
for EOR polymers. In Paper presented at the SPE annual tech- (2017). Low salinity and low hardness alkali water as
nical conference and exhibition, New Orleans, Louisiana, 4e7 displacement agent for secondary and tertiary flooding in
October. https://doi.org/10.2118/124798-MS. sandstones. In Paper presented at the SPE annual caspian tech-
Mirchi, V. (2018). Pore-scale investigation of the effect of sur- nical conference and exhibition, Baku, Azerbaijan, 1e3
factant on fluid occupancies during low-salinity water- November. https://doi.org/10.2118/188998-MS.
flooding in carbonates. In Paper presented at the SPE Suleimanov, B. A., Latifov, Y. A., Veliyev, E. F., & Frampton, H.
annual technical conference and exhibition, Dallas, Texas, (2018). Comparative analysis of the EOR mechanisms by
USA, 24e26 September. https://doi.org/10.2118/194045- using low salinity and low hardness alkaline water. Journal
STU. of Petroleum Science and Engineering, 162,35e43. https://
Mohammadi, H., & Jerauld, G. (2012). Mechanistic modeling doi.org/10.1016/j.petrol.2017.12.005.
of the benefit of combining polymer with low salinity water Tavassoli, S., Korrani, A. K. N., Pope, G. A., & Sepehrnoori, K.
for enhanced oil recovery. In Paper presented at the SPE (2016). Low-salinity surfactant floodingda multimechan-
improved oil recovery symposium, Tulsa, Oklahoma, USA, istic enhanced-oil-recovery method. SPE Journal, 21(03),
14e18 April. https://doi.org/10.2118/153161-MS. 744e760. https://doi.org/10.2118/173801-PA.
Nelson, R. C. (1982). The salinity-requirement diagram e a Teklu, T. W., Li, X., Zhou, Z., Alharthy, N., Wang, L., & Abass, H.
useful tool in chemical flooding research and (2018). Low-salinity water and surfactants for hydraulic
development. SPE Journal, 22(02), 259e270. https:// fracturing and EOR of shales. Journal of Petroleum Science
doi.org/10.2118/8824-PA. and Engineering, 162, 367e377. https://doi.org/10.1016/
Nghiem, L., Skoreyko, F., Gorucu, S. E., Dang, C., & j.petrol.2017.12.057.
Shrivastava, V. (2017). A framework for mechanistic Tichelkamp, T., Hosseinzade Khanamiri, H., Nourani, M.,
modeling of alkali-surfactant-polymer process in an Stensen, J.Å., Torsæter, O., & Øye, G. (2016). EOR potential
equation-of-state compositional simulator. In Paper presented of mixed Alkylbenzene sulfonate surfactant at low salinity
at the SPE reservoir simulation conference, Montgomery, Texas, and the effect of calcium on “optimal ionic strength”. En-
USA, 20e22 Feburary. https://doi.org/10.2118/182628-MS. ergy and Fuels, 30(4), 2919e2924. https://doi.org/
Rivet, S., Lake, L. W., & Pope, G. A. (2010). A coreflood inves- 10.1021/acs.energyfuels.6b00282.
tigation of low-salinity enhanced oil recovery. In Paper pre- Torrijos, P., Iván, D., Puntervold, T., Skule Strand, Austad, T.,
sented at the SPE annual technical conference and exhibition, Bleivik, T. H., et al. (2018). An experimental study of the
Florence, Italy, 19e22 September. https://doi.org/10.2118/ low salinity smart water e polymer hybrid EOR effect in
134297-MS. sandstone material. Journal of Petroleum Science and Engi-
Seccombe, J. C., Lager, A., Webb, K. J., Jerauld, G., & Fueg, E. neering, 164, 219e229. https://doi.org/10.1016/
(2008). Improving wateflood recovery: LoSalTM EOR field j.petrol.2018.01.031.
evaluation. In Paper presented at the SPE symposium on Unsal, E., ten Berge, A. B. G. M., & Wever, D. A. Z. (2018). Low
improved oil recovery, Tulsa, Oklahoma, USA, 20e23 April. salinity polymer flooding: Lower polymer retention and
https://doi.org/10.2118/113480-MS. improved injectivity. Journal of Petroleum Science and Engi-
Seright, R. S., Fan, T., Wavrik, K., & de Carvalho Balaban, R. neering, 163, 671e682. https://doi.org/10.1016/j.petrol.
(2011). New insights into polymer rheology in porous 2017.10.069.