Page 265 - Hybrid-Renewable Energy Systems in Microgrids
P. 265

242                                 Hybrid-Renewable Energy Systems in Microgrids

         References


           [1]  Kaabeche, A., Maïouf, B., Ibtiouen, R., 2011. Techno-economic valuation and optimi-
             zation of integrated photovoltaic/wind energy conversion system. Sol. Energy 85 (10),
             2407–2420.
           [2]  World Energy Outlook,  Worldenergyoutlook.org, 2018.  Available from:  http://www.
             worldenergyoutlook.org/weo2015/.
           [3]  Adib R., Renewables 2016 global status report, Global Status Report Renewable Energy
             Policy Network for the 21st Century (REN21), 2016.
           [4]  IRENA, 2017. Rethinking Energy 2017: Accelerating the Global Energy Transformation.
             International Renewable Energy Agency, Abu Dhabi.
           [5]  Elhadidy, M.A., Shaahid, S.M., 2000. Parametric study Of hybrid (wind + solar + die-
             sel) power generating systems. Renew. Energy 21 (2), 129–139. doi: 10.1016/s0960-
             1481(00)00040-9, Elsevier, BV.
           [6]  Khare, V., et al., 2016. Solar–wind hybrid renewable energy system: a review. Renew.
             Sustain. Energy Rev. 58, 23–33. doi: 10.1016/j.rser.2015.12.223, Elsevier BV.
           [7]  Nema, R.K., et al., 2010. Design, development and simulation of PC-based scheme for
             characterisation of solar photovoltaic modules. Int. J. Power Electron. 2 (3), 304. doi:
             10.1504/ijpelec.2010.034183, Inderscience Publishers.
           [8]  Kaundinya, D.P., Balachandra,  P., Ravindranath, N.H., 2009. Grid-connected versus
             stand-alone energy systems for decentralized power—a review of literature. Renew. Sus-
             tain. Energy Rev. 13 (8), 2041–2050.
           [9]  Khan, M.J., Iqbal, M.T., 2005. Pre-feasibility study of stand-alone hybrid energy systems
             for applications in newfoundland. Renew. Energy 30 (6), 835–854.
          [10] Wei, Z., et al., 2010. Current status of research on optimum sizing of stand-alone hybrid
             solar–wind power generation systems. Appl. Energy 87 (2), 380–389.
          [11] Yang, H., et al., 2008. Optimal sizing method for stand-alone hybrid solar–wind system
             with LPSP technology by using genetic algorithm. Sol. Energy 82 (4), 354–367.
          [12] Elhadidy, M.A., Shaahid, S.M., 2004. Promoting applications of hybrid power systems in
             hot regions. Renew. Energy 29, 517–528.
          [13] Notton, G., et al., 1996. Autonomous hybrid photovoltaic power plant using a back-up
             generator: a case study in a Mediterranean island. Renew. Energy 7 (4), 371–391. doi:
             10.1016/0960-1481(96)00016-x, Elsevier, BV.
          [14] Merlin, J.M., Babu, S.R., 2014. Energy management on grid connected hybrid renewable
             energy sources using fuzzy logic. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 3 (4),
             2320–3765.
          [15] Khare, V., Nema, S., Baredar, P., 2016. Solar–wind hybrid renewable energy system: a
             review. Renew. Sustain. Energy Rev. 58, 23–33.
          [16] Lu, X., McElroy, M.B., Kiviluoma, J., 2009. Global potential for wind-generated
               electricity. Proc. Natl. Acad. Sci. 106 (27), 10933–10938.
          [17] Electricity, Business, and Business Gas. World Solar PV Energy Potential Maps. British
             Business Energy, 2017, Available from: https://britishbusinessenergy.co.uk/world-solar-map.
          [18] Georgilakis, P.S., 2005. State-of-the-art of decision support systems for the choice of re-
             newable energy sources for energy supply in isolated regions. Int. J. Distr. Energy Resour.
             2 (2), 129–150.
          [19] Kimura, Y., Onai, Y., Ushiyama, I., 1996. A demonstrative study for the wind and solar
             hybrid power system. Renew. Energy 9 (1–4), 895–898.
   260   261   262   263   264   265   266   267   268   269   270