Page 267 - Hybrid-Renewable Energy Systems in Microgrids
P. 267
244 Hybrid-Renewable Energy Systems in Microgrids
[43] Mondol, J.D., et al., 2005. Long-term validated simulation of a building integrated photo-
voltaic system. Sol. Energy 78 (2), 163–176.
[44] Jones, A.D., Underwood, C.P., 2002. A modelling method for building-integrated
photovoltaic power supply. Build. Serv. Eng. Res. Technol. 23 (3), 167–177. doi:
10.1191/0143624402bt040oa, SAGE Publications.
[45] Tadrist, R., et al., 2016. Efficient FPGA implementation to estimate the maximum output
power of a photovoltaic panel using xilinx system generator. Am. J. Appl. Sci. 13 (5),
522–532. doi: 10.3844/ajassp.2016.522.532, Science Publications.
[46] Rosen, K., Van Buskirk, R., Garbesi, K., 1999. Wind energy potential of coastal Eritrea:
an analysis of sparse wind data. Sol. Energy 66 (3), 201–213.
[47] Sfetsos, A., 2000. A comparison of various forecasting techniques applied to mean hourly
wind speed time series. Renew. Energy 21 (1), 23–35.
[48] Neij, L., 1999. Cost dynamics of wind power. Energy 24 (5), 375–389.
[49] Lew, D.J., 2000. Alternatives to coal and candles: wind power in China. Energy Policy 28
(4), 271–286.
[50] Ghali, F.M.A., Abd El Aziz, M.M., Syam, F.A., Simulation and analysis of hybrid sys-
tems using probabilistic techniques, Power Conversion Conference-Nagaoka 1997, Pro-
ceedings of the. vol. 2. IEEE, 1997.
[51] Borowy, B.S., Salameh, Z.M., 1994. Optimum photovoltaic array size for a hybrid wind/
PV system. IEEE Trans. Energy convers. 9 (3), 482–488.
[52] Karaki, S.H., Chedid, R.B., Ramadan, R., 1999. Probabilistic performance assessment of
wind energy conversion systems. IEEE Trans. Energy Convers. 14 (2), 217–224.
[53] Alhusein, M.A., Abu-Leiyah, O., Inayatullah, G., 1993. A combined system of renewable
energy for grid-connected advanced communities. Renew. Energy 3 (6), 563–566.
[54] Lu, Lin, Yang, Hongxing, Burnett, John, 2002. Investigation on wind power potential on
Hong Kong islands-an analysis of wind power and wind turbine characteristics. Renew.
Energy 27 (1), 1–12.
[55] Borowy, B.S., Salameh, Z.M., 1997. Dynamic response of a stand-alone wind energy
conversion system with battery energy storage to a wind gust. IEEE Trans. Energy Con-
vers. 12 (1), 73–78.
[56] Zamani, M.H., Riahy, G.H., 2008. Introducing a new method for optimal sizing of a hy-
brid (wind/PV/battery) system considering instantaneous wind speed variations. Energy
Sustain. Dev. 12 (2), 27–33.
[57] Ekdunge, P., Simonsson, D., 1989. The discharge behaviour of the porous lead electrode
in the lead-acid battery I. Experimental investigations. J. Appl. Electrochem. 19 (2), 127–
135.
[58] Kim, S.C., Hong, WH, 1999. Analysis of the discharge performance of a flooded lead/
acid cell using mathematical modelling. J. Power Sources 77 (1), 74–82.
[59] Bernardi, D.M., Carpenter, M.K., 1995. A mathematical model of the oxygen-recombina-
tion lead- acid cell. J. Electrochem. Soc. 142 (8), 2631–2642.
[60] Nguyen, T.V., White, R.E., Gu, H., 1990. The effects of separator design on the discharge
performance of a starved lead- acid cell. J. Electrochem. Soc. 137 (10), 2998–3004.
[61] Morgan, T.R., Marshall, R.H., Brinkworth, B.J., 1997. ‘ARES’—A refined simulation pro-
gram for the sizing and optimisation of autonomous hybrid energy systems. Sol. Energy
59 (4–6), 205–215.
[62] Chaurey, A., Deambi, S., 1992. Battery storage for PV power systems: an overview. Re-
new. Energy 2 (3), 227–235.
[63] M. Kozaki, T. Yamazaki, Remaining battery capacity meter and method for computing
remaining capacity, 1997. U.S. Patent No. 5,691,078.