Page 10 - Innovations in Intelligent Machines
P. 10

X      Contents
                           4   Meta-Analysis of the Experimental
                               and Modeling Prediction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
                           5   Conclusions.................................................. 36
                           References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
                           Team, Game, and Negotiation based Intelligent Autonomous
                           UAV Task Allocation for Wide Area Applications
                           P.B. Sujit, A. Sinha, and D. Ghose ................................ 39
                           1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
                           2   Existing Literature ........................................... 41
                           3   Task Allocation Using Team Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
                               3.1  Basics of Team Theory .................................. 42
                               3.2  Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
                               3.3  Team Theoretic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
                               3.4  Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
                           4   Task Allocation using Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
                               4.1  Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
                               4.2  Decision-making ........................................ 53
                               4.3  Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
                           5   Search using Game Theoretic Strategies ........................ 61
                               5.1  N-person Game Model ................................... 62
                               5.2  Solution Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
                               5.3  Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
                           6   Conclusions ................................................. 72
                           References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
                           UAV Path Planning Using Evolutionary Algorithms
                           Ioannis K. Nikolos, Eleftherios S. Zografos, and Athina N. Brintaki .... 77
                           1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
                               1.1  Basic Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
                               1.2  Cooperative Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
                               1.3  Path Planning for Single and Multiple UAVs . . . . . . . . . . . . . . . . 80
                               1.4  Outline of the Current Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
                           2   B-Spline and Evolutionary Algorithms Fundamentals . . . . . . . . . . . . . 86
                               2.1  B-Spline Curves ......................................... 86
                               2.2  Fundamentals of Evolutionary Algorithms (EAs) . . . . . . . . . . . . 88
                               2.3  The Solid Boundary Representation . . . . . . . . . . . . . . . . . . . . . . . 89
                           3   Off-line Path Planner for a Single UAV . . . . . . . . . . . . . . . . . . . . . . . . . 90
                           4   Coordinated UAV Path Planning ............................... 92
                               4.1  Constraints and Objectives ............................... 92
                               4.2  Path Modeling Using B-Spline Curves ..................... 93
                               4.3  Objective Function Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
                           5   The Optimization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
                               5.1  Differential Evolution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 97
                               5.2  Radial Basis Function Network for DE Assistance . . . . . . . . . . . 99
   5   6   7   8   9   10   11   12   13   14   15