Page 162 - Innovations in Intelligent Machines
P. 162

154    S. Rathinam and R. Sengupta












                                                                           UAV
                                                                           destination




                                                Fig. 8. Find an Eulerian walk














                                                                           UAV
                                                                           destination



                                           Fig. 9. Find a tour from the Eulerian walk


                           where as, the optimal solution of the minimum cost 1-tree may change. π i can
                           be treated as weights on each vertex i ∈ V . The reason why the optimal solu-
                           tion for a SVP doesn’t change is because for any tour x,     (c ij +π i +π j )
                                                                              {i,j}∈x
                                      c
                           =    {i,j}∈x ij +2    i∈V  π i . Therefore, arg min x {   {i,j}∈x (c ij + π i + π j ):

                                                  c
                           x∈T}=arg min x {  {i,j}∈x ij : x ∈ T}, where T is the set of all tours in V .But

                                                                                c
                           if y denotes a 1-tree, then,   (c ij +π i +π j )=  {i,j}∈y ij +  π i d iy ,
                                                    {i,j}∈y                           i∈V
                           where d iy is the degree of vertex i in y. Hence, the additional cost added
                           depends on the degree of each vertex in the 1-tree. Using the fact that every
                           tour is a 1-tree, we have,

                                      min      c ij +  π i d iy ≤ min   c ij +2  π i ,      (2)
                                      y∈Q                      x∈T
                                          {i,j}∈y   i∈V           {i,j}∈x     i∈V
   157   158   159   160   161   162   163   164   165   166   167