Page 76 - Innovations in Intelligent Machines
P. 76

Team, Game, and Negotiation based UAV Task Allocation  65
                                                 i
                              An N-tuple {y i∗  ∈ Y ,i ∈ N} is said to constitute a mixed strategy non-
                           cooperative (Nash) equilibrium solution for a N-person game in normal form,
                                                                             j
                                                                        j
                           if the following N inequalities are satisfied for all y ∈ Y ,j ∈ N :
                                                                      1
                                                         1∗ 2∗
                                      J  1∗         ...     y y  ...y  N∗ m (P 1 ,P 2 ,...,P N )
                                                         P 1 P 2  P N
                                             q   q    q
                                            P  P     P
                                             1  2     N
                                                  1           1
                                  ≥        ...  y y 2∗  ...y N∗ m (P 1 ,P 2 ,...,P N )
                                                 P 1 P 2  P N
                                      q  q     q
                                     P  P     P
                                      1  2
                                               N
                                                                      2
                                                         1∗ 2∗
                                      J  2∗       ...   y y   ...y  N∗ m (P 1 ,P 2 ,...,P N )
                                                         P 1 P 2  P N
                                             q   q    q
                                            P 1  P 2  P N
                                                  1∗ 2           2
                                  ≥        ...  y y y  3∗  ...y  N∗ m (P 1 ,P 2 ,...,P N )
                                                 P 1 P 2 P 3  P N
                                      q  q     q
                                     P  P     P
                                      1  2     N
                                       .             .             .
                                       .             .             .
                                       .             .             .
                                                                      N
                                                          1∗ 2∗
                                      J  N∗          ...     y y  ...y  N∗ m (P 1 ,P 2 ,...,P N )
                                                          P 1 P 2  P N
                                              q  q     q
                                             P  P     P
                                              1  2     N
                                                          N−1∗ N    N
                                                  1∗ 2∗
                                  ≥        ...  y y    ...y    y  m (P 1 ,P 2 ,...,P N )   (37)
                                                 P 1 P 2  P N−1  P N
                                      q  q     q
                                     P  P     P
                                      1  2     N
                           The noncooperative Nash equilibrium outcome of a N-person game in mixed
                                                             1∗
                           strategies is given by the N-tuple {J ,...,J  N∗ }. If there exists an inner
                                                                        ˘ i
                           mixed strategy solution then, such a solution {y i∗  ∈ Y ; i ∈ N} of an N-person
                           game in normal form satisfies the following set of equations:
                                                        1               1  l
                                     ...   y 2∗  ... y  N∗ {m (P 1 ,...,P N ) − m (P ,P 2 ,...,P N )} =0,
                                                                           1
                                            P 2    P N
                                   q     q
                                  P     P
                                   2     N
                                                                                  q        l
                                                                           P 1 ∈P ,P 1  = P ,
                                                                                           1
                                                                                 1
                                                        2               2     l
                                         1∗ 3∗
                                  ...   y y    ... y  N∗ {m (P 1 ,...,P N ) − m (P 1 ,P ,...,P N )} =0,
                                                                              2
                                         P 1 P 3   P N
                             q  q     q
                            P 1  P 3  P N
                                                                                  q        l
                                                                           P 2 ∈P ,P 2  = P ,
                                                                                 2         2
                                                                 .             .
                                                                 .             .
                                                                 .             .
                                                     N                N               l
                               ...    y  1∗  ... y N−1∗ {m (P 1 ,...,P N ) − m (P 1 ,...,P N−1 ,P )} =0,
                                       P 1    P N−1                                   N
                             q     q
                            P    P
                             1    N−1
                                                                            q
                                                                      P N ∈P ,P N  = P l   (38)
                                                                            N          N
                                                                  q
                                                                                           i
                                   l
                                                                        ˘ i
                           where, P is any one of the search paths in P ,and Y is the interior of Y .If
                                   i                              i
                           the inner mixed strategy solution does not exist then the above formulation
                           may not yield a feasible solution. In that case, we may have to choose some
                           other algorithm. The domain of the search effectiveness function increases
   71   72   73   74   75   76   77   78   79   80   81