Page 119 - Intro to Tensor Calculus
P. 119

114



               we simplify equation (1.4.26) to the form

                                                           "   σ            #
                                          i                                     β   i
                                        ∂A       i    m      ∂A       σ    α ∂x ∂x
                                            +        A   =       +       A          σ  .              (1.4.27)
                                                                                j
                                        ∂x j    mj           ∂x β    αβ       ∂x ∂x
               Define the quantity
                                                          ∂A i     i     m
                                                     i
                                                   A   =      +       A                               (1.4.28)
                                                     ,j     j
                                                          ∂x     mj
                                                               i
               as the covariant derivative of the contravariant tensor A . The equation (1.4.27) demonstrates that a covariant
               derivative of a contravariant tensor will transform like a mixed second order tensor and
                                                                  β
                                                             σ ∂x ∂x  i
                                                       i
                                                     A  ,j  = A  ,β  σ  .                             (1.4.29)
                                                                  j
                                                               ∂x ∂x
                                                                                                  ∂A i
                                                                                            i
               Again it should be observed that for the condition where g ij are constants we have A  ,j  =  and the
                                                                                                  ∂x j
               covariant derivative of a contravariant tensor reduces to an ordinary derivative in this special case.
                   In a similar manner the covariant derivative of second rank tensors can be derived. We find these
               derivatives have the forms:

                                                    ∂A ij       σ          σ
                                             A ij,k =   − A σj      − A iσ
                                                    ∂x k       ik          jk
                                                    ∂A i j     i          σ
                                             A i  =     + A σ      − A i                              (1.4.30)
                                              j,k     k    j          σ
                                                    ∂x        σk         jk
                                                    ∂A ij        i          j
                                              ij            σj          iσ
                                            A    =      + A         + A        .
                                               ,k     k
                                                    ∂x         σk          σk
                   In general, the covariant derivative of a mixed tensor
                                                             ij...k
                                                           A
                                                             lm...p
               of rank n has the form

                                           ij...k
                                        ∂A                i             j                  k
                                ij...k     lm...p  σj...k        iσ...k             ij...σ
                              A       =         + A           + A           + ··· + A
                                lm...p,q    q      lm...p        lm...p             lm...p
                                          ∂x             σq            σq                 σq
                                                                                                      (1.4.31)

                                                          σ      ij...k  σ          ij...k  σ
                                                   ij...k
                                                − A           − A           − ··· − A
                                                   σm...p        lσ...p             lm...σ
                                                         lq            mq                 pq
               and this derivative is a tensor of rank n +1. Note the pattern of the + signs for the contravariant indices
               and the − signs for the covariant indices.
                   Observe that the covariant derivative of an nth order tensor produces an n+1st order tensor, the indices
               of these higher order tensors can also be raised and lowered by multiplication by the metric or conjugate
               metric tensor. For example we can write
                                                                      jk
                                                                              jk i
                                           g im A jk | m = A jk | i  and g im A | m = A |
   114   115   116   117   118   119   120   121   122   123   124