Page 124 - Intro to Tensor Calculus
P. 124

119



               The equations (1.4.46) and (1.4.47) enable us to write

                                             ~    1  "     ~          ~  #
                                       ~   ∂E j      ~   ∂E j   ~   ∂E k
                               [jk, m]=E m ·    =    E m ·    + E m ·
                                            ∂x k  2       ∂x k      ∂x j
                                                                                         ~
                                                                              ~
                                         "                                                  #
                                       1   ∂               ∂                 ∂E m       ∂E m
                                                                         ~
                                               ~
                                                    ~
                                                               ~
                                                                   ~
                                                                                    ~
                                     =         E m · E j +     E m · E k − E j ·  − E k ·
                                       2 ∂x k             ∂x j               ∂x k       ∂x j
                                         "                                                  #
                                                                                         ~
                                                                               ~
                                       1   ∂               ∂                 ∂E k       ∂E j
                                                                         ~
                                                                                    ~
                                                               ~
                                                    ~
                                               ~
                                                                   ~
                                     =         E m · E j +     E m · E k − E j ·  − E k ·
                                       2 ∂x k             ∂x j               ∂x m       ∂x m

                                       1   ∂               ∂              ∂
                                                                   ~
                                                    ~
                                                               ~
                                                                                   ~
                                                                               ~
                                               ~
                                     =         E m · E j +    E m · E k −      E j · E k
                                       2 ∂x k            ∂x j            ∂x m

                                       1 ∂g mj   ∂g mk   ∂g jk
                                     =         +      −       =[kj, m]
                                       2  ∂x k    ∂x j   ∂x m
               which again agrees with our previous result.
                                                                           ~
                                                                                                         j ~
                                                                                                    ~
                   For future reference we make the observation that if the vector A is represented in the form A = A E j ,
               involving contravariant components, then we may write
                                                                   !
                                                                 ~
                                           ~
                                         ∂A    k     ∂A j     j  ∂E j   k
                                                         ~
                                     ~
                                    dA =     dx =       E j + A       dx
                                         ∂x k        ∂x k       ∂x k
                                                       j
                                                    ∂A        j   i        k
                                                                     ~
                                                        ~
                                                 =      E j + A      E i  dx                          (1.4.48)
                                                     ∂x k        jk
                                                       j
                                                    ∂A       j     m       k    j    k ~
                                                                      ~
                                                 =       +       A    E j dx = A  ,k  dx E j .
                                                     ∂x k   mk
                                    ~
                                                              ~
                                                                    ~ j
               Similarly, if the vector A is represented in the form A = A j E involving covariant components it is left as
               an exercise to show that
                                                        ~
                                                                  k ~ j
                                                       dA = A j,k dx E                                (1.4.49)
               Ricci’s Theorem
                   Ricci’s theorem states that the covariant derivative of the metric tensor vanishes and g ik,l =0.
               Proof: We have

                                      ∂g ik   m          m
                                g ik,l =  −       g im −     g mk
                                      ∂x l    kl         il
                                      ∂g ik
                                g ik,l =  − [kl, i] − [il, k]
                                      ∂x l

                                      ∂g ik  1 ∂g ik  ∂g il  ∂g kl  1 ∂g ik  ∂g kl  ∂g il
                                g ik,l =  −         +     −       −        +      −      =0.
                                      ∂x l   2  ∂x l  ∂x k   ∂x i   2  ∂x l   ∂x i  ∂x k
               Because of Ricci’s theorem the components of the metric tensor can be regarded as constants during covariant
               differentiation.
               EXAMPLE 1.4-7. (Covariant differentiation) Show that δ    i  =0.
                                                                        j,k
               Solution
                                           ∂δ i j     i         σ        i        i
                                     δ i  =   + δ σ      − δ i     =        −       =0.
                                      j,k    k   j          σ
                                          ∂x        σk         jk      jk      jk
   119   120   121   122   123   124   125   126   127   128   129