Page 128 - Intro to Tensor Calculus
P. 128

123



                                                      EXERCISE 1.4


              I 1.  Find the nonzero Christoffel symbols of the first and second kind in cylindrical coordinates
                    2
                       3
                 1
               (x ,x ,x )= (r, θ, z), where x = r cos θ,  y = r sin θ,  z = z.
              I 2.  Find the nonzero Christoffel symbols of the first and second kind in spherical coordinates
                 1
                    2
                       3
               (x ,x ,x )= (ρ, θ, φ), where x = ρ sin θ cos φ,  y = ρ sin θ sin φ,  z = ρ cos θ.
              I 3.  Find the nonzero Christoffel symbols of the first and second kind in parabolic cylindrical coordinates
                                                     1
                 1  2  3                                2    2
               (x ,x ,x )= (ξ, η, z), where x = ξη,  y =  (ξ − η ),  z = z.
                                                     2
              I 4.  Find the nonzero Christoffel symbols of the first and second kind in parabolic coordinates
                                                                       1  2   2
                       3
                 1
                    2
               (x ,x ,x )= (ξ, η, φ), where x = ξη cos φ,  y = ξη sin φ,  z =  (ξ − η ).
                                                                       2
              I 5.  Find the nonzero Christoffel symbols of the first and second kind in elliptic cylindrical coordinates
                    2
                       3
                 1
               (x ,x ,x )= (ξ, η, z), where x =cosh ξ cos η,  y = sinh ξ sin η,  z = z.
              I 6.  Find the nonzero Christoffel symbols of the first and second kind for the oblique cylindrical coordinates
                    2
                       3
                 1
               (x ,x ,x )= (r, φ, η), where x = r cos φ,  y = r sin φ+η cos α,  z = η sin α with 0 <α <  π  and α constant.
                                                                                              2
               Hint: See figure 1.3-18 and exercise 1.3, problem 12.
                                        ∂g ik
              I 7.  Show [ij, k]+ [kj, i]=  .
                                        ∂x j
              I 8.
                         r      ri

                (a) Let      = g [st, i] and solve for the Christoffel symbol of the first kind in terms of the Christoffel
                         st
                   symbol of the second kind.

                                        n
                (b) Assume [st, i]= g ni    and solve for the Christoffel symbol of the second kind in terms of the
                                       st
                   Christoffel symbol of the first kind.
              I 9.
                (a) Write down the transformation law satisfied by the fourth order tensor   ijk,m .
                (b) Show that   ijk,m = 0 in all coordinate systems.
                              √
                (c) Show that ( g) ,k =0.

              I 10.  Show   ijk  =0.
                             ,m
              I 11.  Calculate the second covariant derivative A i,kj .

                                                                                 ∂φ
                                                                              ~ i
                                                     2
                                                  1
                                                        3
              I 12.  The gradient of a scalar field φ(x ,x ,x ) is the vector grad φ = E  .
                                                                                 ∂x i
                (a) Find the physical components associated with the covariant components φ ,i
                                                                                i
                                                                     dφ        A φ ,i
                                                                 i
                (b) Show the directional derivative of φ in a direction A is  =         .
                                                                                   n 1/2
                                                                     dA   (g mn A A )
                                                                                m
   123   124   125   126   127   128   129   130   131   132   133