Page 133 - Intro to Tensor Calculus
P. 133

128



              I 46. Verify the relations
                                                     ∂g ij         ∂g nm
                                                         = −g mj g ni
                                                     ∂x k           ∂x k
                                                    ∂g in     mn  ij  ∂g jm
                                                         = −g    g
                                                     ∂x k           ∂x k

                                                                               1  ∂   √   ijk
                                                                         jk
                                   ijk
              I 47.   Assume that B   is an absolute tensor. Is the quantity T  = √    gB     a tensor? Justify
                                                                                g ∂x i
               your answer. If your answer is “no”, explain your answer and determine if there any conditions you can
               impose upon B ijk  such that the above quantity will be a tensor?

              I 48.  The e-permutation symbol can be used to define various vector products. Let A i ,B i ,C i ,D i
               i =1,... ,N denote vectors, then expand and verify the following products:
                   (a) In two dimensions
                                                 R =e ij A i B j  a scalar determinant.

                                                R i =e ij A j  a vector (rotation).
                   (b) In three dimensions
                                                S =e ijk A i B j C k  a scalar determinant.
                                                             a vector cross product.
                                               S i =e ijk B j C k
                                                           a skew-symmetric matrix
                                               S ij =e ijk C k
                   (c) In four dimensions

                                                                a scalar determinant.
                                            T =e ijkm A i B j C k D m
                                                              4-dimensional cross product.
                                           T i =e ijkm B j C k D m
                                                           skew-symmetric matrix.
                                           T ij =e ijkm C k D m
                                          T ijk =e ikm D m  skew-symmetric tensor.
                   with similar products in higher dimensions.


              I 49.  Expand the curl operator for:
                   (a) Two dimensions B = e ij A j,i
                   (b) Three dimensions B i = e ijk A k,j
                   (c) Four dimensions B ij = e ijkm A m,k
   128   129   130   131   132   133   134   135   136   137   138