Page 162 - Intro to Tensor Calculus
P. 162

157



                                        2
                                                       2
                                                   2
                                                                  2
               where g 11 = −1, g 22 = −ρ , g 33 = −ρ sin θ, g 44 = c and g ij =0 for i 6= j. The negative signs are
                                     2   2   2
                                 ds
               introduced so that     = c − v is positive when v< c and the velocity is not greater than c. However,
                                 dt
               this metric will not work since the curvature tensor vanishes. The spherical symmetry of the problem suggest
                                                                      1
                                                                            3
                                                                         2
                                                                               4
               that g 11 and g 44 change while g 22 and g 33 remain fixed. Let (x ,x ,x ,x )= (ρ, θ, φ, t) and assume
                                                                      2
                                                                          2
                                                          2
                                              u
                                       g 11 = −e ,  g 22 = −ρ ,  g 33 = −ρ sin θ,  g 44 = e v        (1.5.159)
               where u and v are unknown functions of ρ to be determined. This gives the conjugate metric tensor
                                                         −1           −1
                                       11     −u    22         33              44   −v
                                      g  = −e   ,  g  =    ,  g   =      2  ,  g  = e                (1.5.160)
                                                         ρ 2        ρ sin θ
                                                                     2
               and g ij  =0 for i 6= j. This choice of a metric produces
                                                                                v
                                                             2
                                          2
                                                                  2
                                                    2
                                                         2
                                                                           2
                                                u
                                                                     2
                                        ds = −e (dρ) − ρ (dθ) − ρ sin θ(dφ) + e (dt) 2               (1.5.161)
               together with the nonzero Christoffel symbols

                         1     1 du                                  3    1
                             =                                           =
                         11    2 dρ             2    1              13    ρ
                                                    =

                         1         −u          12    ρ               3    cos θ     4    1 dv
                             = − ρe                                      =              =
                         22                     2    1              23     sin θ   14    2 dρ
                                                    =                                                (1.5.162)

                         1         −u   2      21    ρ               3    1         4    1 dv
                             = − ρe   sin θ                              =              =    .
                         33                     2                   31    ρ        41    2 dρ
                                                    = − sin θ cos θ

                         1     1  v−u dv       33                    3    cos θ
                             = e                                         =
                         44    2     dr                             32     sin θ
               The equation (1.5.158) is used to calculate the nonzero G ij and we find that
                                               2
                                             1 d v  1    dv    2  1 du dv  1 du
                                       G 11 =     +         −        −
                                             2 dρ 2  4  dρ     4 dρ dρ  ρ dρ

                                                     1 dv   1 du     u
                                             −u
                                       G 22 =e   1+ ρ     − ρ     − e
                                                     2 dρ   2 dρ
                                                                                                     (1.5.163)
                                                     1 dv   1 du     u    2
                                             −u
                                       G 33 =e   1+ ρ     − ρ     − e   sin θ
                                                     2 dρ   2 dρ
                                                                             2      !
                                                       2
                                                     1 d v  1 du dv  1   dv     1 dv
                                                v−u
                                       G 44 = − e         −        +          +
                                                     2 dρ 2  4 dρ dρ  4  dρ     ρ dρ
               and G ij =0 for i 6= j. The assumption that G ij =0 for all i, j leads to the differential equations
                                               2
                                              d v   1    dv    2  1 du dv  2 du
                                                 +          −        −      =0
                                              dρ 2  2  dρ     2 dρ dρ  ρ dρ
                                                          1 dv    1 du    u
                                                       1+ ρ     − ρ    − e =0                        (1.5.164)
                                                          2 dρ    2 dρ
                                               2
                                              d v   1    dv    2  1 du dv  2 dv
                                                 +          −        +      =0.
                                              dρ 2  2  dρ     2 dρ dρ  ρ dρ
   157   158   159   160   161   162   163   164   165   166   167