Page 164 - Intro to Tensor Calculus
P. 164

159



               By the chain rule we have

                                                                               2
                                      2
                                                            2
                                            2
                                                                  2
                                     d ρ   d ρ    dφ    2  dρ d φ  d ρ c 2 4    dρ      −2c 2 4
                                         =            +        =       +
                                                                   2
                                     ds 2  dφ 2  ds     dφ ds 2  dφ ρ 4    dφ      ρ 5
               and so equation (1.5.176) can be written in the form
                                          2
                                         d ρ   2    dρ    2  c 2 ρ 2  c 2     c 2
                                             −          +      +   − 1 −      ρ =0.                  (1.5.177)
                                         dφ 2  ρ  dφ      2 c 2  2         ρ
                                                             4
               The substitution ρ =  1  reduces the equation (1.5.177) to the form
                                   u
                                                     2
                                                    d u       c 2  3   2
                                                        + u −  2  =  c 2 u .                         (1.5.178)
                                                    dφ 2     2c 4  2
               Multiply the equation (1.5.178) by 2 du  and integrate with respect to φ to obtain
                                               dφ
                                                      2
                                                  du      2   c 2      3
                                                       + u −    u = c 2 u + c 6 .                    (1.5.179)
                                                  dφ          c 2
                                                               4
               where c 6 is a constant of integration. To determine the constant c 6 we write the equation (1.5.161) in the
               special case θ =  π  and use the substitutions from the equations (1.5.174) and (1.5.175) to obtain
                              2
                                              2             2              2          2
                                          dρ      u  dρ dφ          2  dφ      v  dt
                                       u
                                      e        = e           =1 − ρ         + e
                                          ds         dφ ds             ds         ds
               or
                                               2                          2     4
                                           dρ          c 2  2       c 2  c 5  ρ
                                                + 1 −      ρ + 1 −     −        =0.                  (1.5.180)
                                           dφ          ρ             ρ   c 2  c 2
                                                                              4
               The substitution ρ =  1  reduces the equation (1.5.180) to the form
                                   u
                                                 2                         2
                                             du      2     3   1    c 2   c 5
                                                  + u − c 2 u +  −    u −     =0.                    (1.5.181)
                                                                          2 2
                                             dφ                c 2  c 2  c c
                                                                4   4       4
               Now comparing the equations (1.5.181) and (1.5.179) we select
                                                              2
                                                             c 5    1
                                                      c 6 =    − 1   2
                                                             c 2    c 4
               so that the equation (1.5.179) takes on the form
                                                  2                  2
                                             du       2  c 2        c 5  1      3
                                                   + u −  2 u + 1 −      2  = c 2 u                  (1.5.182)
                                             dφ          c 4        c 2  c 4
               Now we can compare our relativistic equation (1.5.182) with our Newtonian equation (1.5.143). In order
               that the two equations almost agree we select the constants c 2 ,c 4 ,c 5 so that
                                                                      2
                                                                     c 5
                                                c 2  =  2GM  and  1 −  c 2  =  E  .                  (1.5.183)
                                                c 2   h 2          c 2    h 2
                                                 4                  4
               The equations (1.5.183) are only two equations in three unknowns and so we use the additional equation

                                                       dφ          dφ ds
                                                      2           2
                                                 lim ρ    = lim ρ       = h                          (1.5.184)
                                                 ρ→∞    dt  ρ→∞    ds dt
   159   160   161   162   163   164   165   166   167   168   169