Page 168 - Intro to Tensor Calculus
P. 168

163



              I 8.  Derive the Gauss equations by assuming that


                                                           r
                                                                 r
                                                                             r
                                                    r
                          r
                          ~ uu = c 1~r u + c 2~r v + c 3 bn,  ~ uv = c 4~ u + c 5~ v + c 6 bn,  ~ vv = c 7~ u + c 8~ v + c 9 bn
                                                                                           r
                                                                                     r
               where c 1 ,... ,c 9 are constants determined by taking dot products of the above vectors with the vectors ~r u ,~r v ,

                                      1            2                  1           2
               and bn. Show that c 1 =    ,c 2 =      ,c 3 = e, c 4 =     ,c 5 =      ,c 6 = f,
                                      11          11                 12           12
                                                                                     2
                      1           2                                                 ∂ ~r      γ    ∂~ r
               c 7 =      ,c 8 =      ,c 9 = g Show the Gauss equations can be written    =            +b αβ bn.
                                                                                    α
                      22          22                                              ∂u ∂u β     αβ   ∂u γ
              I 9.  Derive the Weingarten equations
                                                                    r    ∗      ∗
                                          b n u = c 1~r u + c 2~r v  ~ u = c bn u + c bn v
                                                                         1
                                                                                2
                                                            and
                                                r     r             r    ∗      ∗
                                          b n v = c 3~ u + c 4~ v   ~ v = c bn u + c bn v
                                                                         3      4
               and show
                                    fF − eG         gF − fG          fF − gE         fG − gF
                                                                  ∗
                                                                                 ∗
                                c 1 =          c 3 =             c =        2   c =        2
                                                                  1
                                                                                 3
                                    EG − F 2        EG − F 2          eg − f         eg − f
                                    eF − fE         fF − gE          fE − eF         fF − eG
                                                                  ∗
                                                                                 ∗
                                c 2 =          c 4 =             c =            c =
                                                                                 4
                                                                  2
                                    EG − F 2        EG − F 2          eg − f 2       eg − f 2
               The constants in the above equations are determined in a manner similar to that suggested in problem 8.
               Show that the Weingarten equations can be written in the form
                                                        ∂bn     β  ∂~
                                                                   r
                                                           = −b α    .
                                                       ∂u α      ∂u β
                                 r
                                 ~ u × ~r v
              I 10.   Using bn = √       , the results from exercise 1.1, problem 9(a), and the results from problem 5,
                                 EG − F  2
               verify that

                                            2   p
                             r
                            (~ u × ~r uu ) · bn =  EG − F 2
                                            11
                                                                                   1   p
                                                                      r
                                                                 r
                                                                                                2
                                            2   p                (~ v × ~ uv ) · bn = −  EG − F
                            (~ u × ~ uv ) · bn =  EG − F 2                        21
                             r
                                 r
                                            12
                                                                                   1   p
                                                                 r    r                  EG − F 2
                                              1   p        2     (~ v × ~ vv ) · bn = −
                             r
                                 r
                            (~ v × ~ uu ) · bn = −  EG − F                        22
                                              11                               p
                                                                 (~ u × ~ v ) · bn =  EG − F 2
                                                                       r
                                                                  r

                                            2   p
                             r
                                 r
                            (~ u × ~ vv ) · bn =  EG − F 2
                                            22
               and then derive the formula for the geodesic curvature given by equation (1.5.48).
                             ~
                                        ~
                            dT        dT                       α
                        ~          ~              αδ
               Hint:(bn × T) ·  =(T ×    ) · bn and a ]βγ, δ]=     .
                            ds         ds                     βγ
   163   164   165   166   167   168   169   170   171   172   173