Page 169 - Intro to Tensor Calculus
P. 169

164



              I 11.   Verify the equation (1.5.39) which shows that the normal curvature directions are orthogonal. i.e.
               verify that Gλ 1 λ 2 + F(λ 1 + λ 2 )+ E =0.

                                   δ
              I 12.  Verify that δ βγ ωα R ωαβγ =4R λνστ .
                                 στ λν
              I 13.  Find the first fundamental form and unit normal to the surface defined by z = f(x, y).
              I 14.  Verify
                                                    A i,jk − A i,kj = A σ R σ
                                                                      .ijk
               where
                                          ∂    σ      ∂    σ      n     σ       n     σ
                                    σ
                                  R .ijk  =        −          +             −             .
                                         ∂x j  ik    ∂x k  ij     ik    nj      ij   nk
               which is sometimes written

                                                                      s       s
                                                     ∂      ∂

                                           R injk =     ∂x j  ∂x k    +     nj  nk

                                                     [nj, k][nk, i]        [ij, s]  [ik, s]
              I 15.  For R ijkl = g iσ R σ  show
                                    .jkl

                                            ∂          ∂                s            s
                                    R injk =   [nk, i] −  [nj, i]+ [ik, s]  − [ij, s]
                                           ∂x j       ∂x k              nj          nk
               which is sometimes written

                                                                      n      n
                                                     ∂      ∂

                                                    ∂x j   ∂x k              ij
                                                                     ik
                                            σ
                                           R .ijk  =               +



                                                     σ      σ         σ      σ

                                                     ij     ik       nk      nj

              I 16.  Show
                                     2        2        2        2
                               1    ∂ g il   ∂ g jl   ∂ g ik   ∂ g jk    αβ
                        R ijkl =          −        −        +         + g   ([jk, β][il, α] − [jl, β][ik, α]) .
                                                       j
                                              i
                                     j
                                                                i
                               2   ∂x ∂x k  ∂x ∂x k  ∂x ∂x l  ∂x ∂x l
              I 17.  Use the results from problem 15 to show
                                (i) R jikl = −R ijkl ,  (ii) R ijlk = −R ijkl ,  (iii) R klij = R ijkl
               Hence, the tensor R ijkl is skew-symmetric in the indices i, j and k, l. Also the tensor R ijkl is symmetric with
               respect to the (ij)and (kl) pair of indices.
              I 18.  Verify the following cyclic properties of the Riemann Christoffel symbol:
                                       (i) R nijk + R njki + R nkij = 0  first index fixed

                                       (ii) R injk + R jnki + R knij = 0  second index fixed
                                      (iii) R ijnk + R jkni + R kinj = 0  third index fixed
                                      (iv)  R ikjn + R kjin + R jikn = 0  fourth index fixed

              I 19.  By employing the results from the previous problems, show all components of the form:
               R iijk ,  R injj ,  R iijj ,  R iiii ,  (no summation on i or j) must be zero.
   164   165   166   167   168   169   170   171   172   173   174