Page 244 - Intro to Tensor Calculus
P. 244

238



                                                      EXERCISE 2.3

                                                                                                        2
              I 1.   Assume an orthogonal coordinate system with metric tensor g ij =0 for i 6= j and g (i)(i) = h (no
                                                                                                        i
               summation on i). Use the definition of strain
                                                 1              1     t       t
                                            e rs =  (u r,s + u s,r )=  g rtu ,s  + g st u ,r
                                                 2              2
               and show that in terms of the physical components
                                                     e ij
                                             e(ij)=       no summation on i or j
                                                    h i h j
                                              u(i)= h i u i  no summation on i

               there results the equations:
                                           t
                                         ∂u      t    m
                                e ii = g it  i  +    u     no summation on i
                                         ∂x     mi
                                       ∂u t     ∂u t
                               2e ij = g it  j  + g jt  i  ,  i 6= j
                                       ∂x       ∂x
                                                       3
                                      ∂   u(i)     1  X   u(m) ∂     2
                              e(ii)=            +   2               h i  no summation on i
                                     ∂x i  h i    2h       h m ∂x m
                                                    i m=1

                                     h i ∂   u(i)    h j ∂  u(j)
                             2e(ij)=              +               ,  no summation on i or j, i 6= j.
                                     h j ∂x j  h i   h i ∂x i  h j
              I 2. Use the results from problem 1 to write out all components of the strain tensor in Cartesian coordinates.
               Use the notation u(1) = u,u(2) = v,u(3) = w and

                         e(11) = e xx ,  e(22) = e yy ,  e(33) = e zz ,  e(12) = e xy ,  e(13) = e xz ,  e(23) = e yz

               to verify the relations:

                                                                 1   ∂v   ∂u
                                                    ∂u
                                              e xx =        e xy =      +
                                                    ∂x           2   ∂x   ∂y

                                                    ∂v           1   ∂u   ∂w
                                              e yy =        e xz =      +
                                                    ∂y           2   ∂z   ∂x
                                                    ∂w           1     ∂w  ∂v
                                              e zz =        e zy =      +
                                                    ∂z           2   ∂y   ∂z
              I 3. Use the results from problem 1 to write out all components of the strain tensor in cylindrical coordinates.
               Use the notation u(1) = u r , u(2) = u θ , u(3) = u z and

                          e(11) = e rr ,  e(22) = e θθ ,  e(33) = e zz ,  e(12) = e rθ ,  e(13) = e rz ,  e(23) = e θz

               to verify the relations:

                                                                 1  1 ∂u r  ∂u θ  u θ
                                             ∂u r          e rθ =        +     −
                                       e rr =                    2  r ∂θ    ∂r    r
                                             ∂r

                                                                 1
                                             1 ∂u θ  u r            ∂u z  ∂u r
                                       e θθ =     +        e rz =       +
                                             r ∂θ    r           2  ∂r     ∂z

                                             ∂u z                1
                                       e zz =              e θz =   ∂u θ  +  1 ∂u z
                                             ∂z                  2  ∂z    r ∂θ
   239   240   241   242   243   244   245   246   247   248   249