Page 245 - Intro to Tensor Calculus
P. 245

239



              I 4. Use the results from problem 1 to write out all components of the strain tensor in spherical coordinates.
               Use the notation u(1) = u ρ ,u(2) = u θ ,u(3) = u φ and


                         e(11) = e ρρ ,  e(22) = e θθ ,  e(33) = e φφ ,  e(12) = e ρθ ,  e(13) = e ρφ ,  e(23) = e θφ

               to verify the relations

                                                                   1
                                 ∂u ρ                                 1 ∂u ρ  u θ  ∂u θ
                           e ρρ =                            e ρθ =        −    +
                                 ∂ρ                                2  ρ ∂θ    ρ    ∂ρ

                                 1 ∂u θ  u ρ                       1    1  ∂u ρ   u φ  ∂u φ
                           e θθ =     +                      e ρφ =            −    +
                                 ρ ∂θ    ρ                         2  ρ sin θ ∂φ  ρ    ∂ρ
                                   1  ∂u φ   u ρ  u θ              1     1 ∂u φ  u φ     1   ∂u θ
                           e φφ =         +    +    cot θ    e θφ =        −    cot θ +
                                 ρ sin θ ∂φ  ρ    ρ                2  ρ ∂θ    ρ        ρ sin θ ∂φ
              I 5. Expand equation (2.3.67) and find the dilatation in terms of the physical components of an orthogonal
               system and verify that


                                            1    ∂(h 2 h 3 u(1))  ∂(h 1 h 3 u(2))  ∂(h 1 h 2 u(3))
                                     Θ=                1    +       2     +       3
                                         h 1 h 2 h 3  ∂x          ∂x            ∂x
              I 6. Verify that the dilatation in Cartesian coordinates is
                                                                 ∂u    ∂v   ∂w
                                             Θ= e xx + e yy + e zz =  +   +    .
                                                                 ∂x    ∂y   ∂z

              I 7. Verify that the dilatation in cylindrical coordinates is

                                                            ∂u r  1 ∂u θ  1     ∂u z
                                        Θ= e rr + e θθ + e zz =  +      + u r +    .
                                                             ∂r   r ∂θ    r     ∂z
              I 8. Verify that the dilatation in spherical coordinates is

                                                     ∂u ρ  1 ∂u θ  2       1  ∂u φ   u θ cot θ
                                 Θ= e ρρ + e θθ + e φφ =  +     + u ρ +           +        .
                                                     ∂ρ    ρ ∂θ    ρ     ρ sin θ ∂φ    ρ

              I 9. Show that in an orthogonal set of coordinates the rotation tensor ω ij can be written in terms of physical
               components in the form

                                              1    ∂(h i u(i))  ∂(h j u(j))
                                     ω(ij)=            j   −       i    ,  no summations
                                            2h i h j  ∂x        ∂x
               Hint: See problem 1.
              I 10. Use the result from problem 9 to verify that in Cartesian coordinates


                                                           1  ∂v   ∂u
                                                     ω yx =      −
                                                           2  ∂x   ∂y

                                                           1  ∂u   ∂w
                                                     ω xz =      −
                                                           2  ∂z   ∂x

                                                           1  ∂w    ∂v
                                                     ω zy =      −
                                                           2  ∂y    ∂z
   240   241   242   243   244   245   246   247   248   249   250